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POLLUTION PREVENTION DESIGN
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PFittshurgh, Pennaylvania

CHEMICAL PROCESS DESIGN FOR ENVIRONMENTAL
CONSIDERATIONS

In view of growing environmental concern and stringent legis-
Iation, there {s o eritical need for environmental considerations
in the developing large-scala chemical processes, The increas-
ingly tighter cnvironmental constraints imposed by regulators
have Ind to the identificaiion and development of alternate
processes to eliminate, or at least minimize, effluents in a
chemieal process. Nowadays, industries ara practicing the art.
of poliution prevention, which invalves fundamental changes in
processes to minimize the formation of pollutania, as opposed
to prifution coniral, invelving end-of-pipe treaiment of proceas
emiszions. Thia philosophy of pollution prevention adopted by
the ehemieal process industriag (CPIa) usen auitable pathways
and operations to make products withont penerating hag-
ardoua materials, or #s in some cases, recover in full or in part
tho materialy referred to 33 “waste,” Techniques for pollution
prevention often lead to stroctural process alternatives and
paramelric alternatives reiated to proeess and operating
conditions, o both, resulting in significant reduetion in pollu-
tant formation with minimal incresse in capital and operating
coata. Carrenily, environmendally friendly or “green” processes
are deaigned on the basis af new concepla in process onginecr-
ing, such as provess inkegration, which embodies a number of
closely related methodologies for designing new proceases and
retrofitting exiating ones by considering the performance of
the nntire process. The main advantape of process integration
techniques is that they ars inhersntly “conservation-oriented”
and enhanca the process performance by minimizing the use
and/or maximizing the rccovery of energy and materials,
conaistent with the gosls of pollution prevention, souree Te-
duction, and waste minimization (1). Incarporating pellution
prevenlion concepts intn dosign and development at the initial
stapes leads to processes that are less cost-intensive, thershy
reducing the technical and economic risk from environmental
tsgnes. Tn addition to pollutien prevention, imtograted envi-
ronmental control {IEC) strategies introdmced in the carly
design atages of a progess, rather than an end-of-pipe control
option intreduced in the later stages, impreve the technical
and economic performance of a process. Por example, studica
by the Eleciric Power Reseooch Institote (EPRT} show that ag
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much g3 50% reduction in total environmental control aystem
costs for coal-fired power plants 1z achieved by processes using
intagrated emvironmental eontrol degign compnred to plants
uaing end-of pipe contral devicea (2}, Figure 1 shows how the
coneepts of integrated environmentsl contrel atrategies and
procesa intepgretinn, working together, result in developing
“clean” process technologies.

A consensua for fotore dircckieons in tlie area of environ-
mental considerationa in process design and simulation was
defined in December 1992, when professionals from the in-
dustry, academia, and the government met to address several
issucs related to ftha environmental objectives for designing
new procesaes and retrafitting existing aones, The eotenma was
a recommendation [or a locused process synthesis approach
from an environmental perspeetive. This tesk consises of
making decisions reganding which units shoutld inteprate a
proceas, how they should be interconnected, and determines
their gizes and the operating conditions so that the desiped
objeclives (econmmie, environmental, ete) sre attainable. The
conclusion of the participants in the weorkshop, which was
fnintly aponsored by the American Institute of Chemical En-
gincering (ATChE), Envirnnmental Protection Agency (EPA)
and the Depariment of Energy (DOE), was to rank research fa
desvelop niew and improved methods for ayathesizng chemical
proeedses that meet evviranmental objestives by meorporating
pollution prevention concepta in the anrly stagos of A desipn.
Thie would ensble developing alternate process lowsheets
(diagrammatic representations of the process operstions with
their intereonneckions} and haz applications extending for he-
yond the capability of exsting cammereial process simulaters,
Some af the idantified necda arc as fhllows (30

* Tntegrate process synthesis and process simulation.

+ Adopt a sophisticaled opttmisation approach o aynihesize
Prosesses,

= Develap knowledge-based expert syalems b synthesrs.

= Explore hetter madeling capabilities io treal the proba-
biliatie natonre of eovironmental data in  chemieal
roCeEses,

* Develop nonconwantional techmnological altormeatives for
pollution controd.

= Tdentify alternate reaction pathwaye and calalyats.

= Identify barriers in process madels or heuristics.

= Implement rate-based modeling capabilities (as opposed
tn equilibrinm modeling which iz perfbrmed by most com-
mercial simulators).

= Develop data aequisition and enhaneed modeling capabil-
ttien for separating dilute components nf atreams to iden-
tify proeess designa for a range of environmenial, coat, and
aperating needs.

= Develop technigies for  delining wltimately limiting
process efficiencies.,

+ Identify better techniques to assess enviranmental costs
and impacts.

A key eomponent in the deatgn of elann process technologies
inherant in almosat all the identified needs is related to devel-
aping sophisticated tools for process simulation snd syntheais.
Commercial process simulators, developed in the late 70y and
used extensively by the chemical process industries to track
compement flows in the procesa, are equipped with datailed
proeegs antd cogt models and elabovate physical property data
banks, but they lack any capability for process synthesis
ineorporating onvirommental control processes. Further, it
iz now understond thet nearly all analysez of covironmen-
tal comtrol tachnologies in the sarly pheose of research and
development myvolve uncertainties, Commercial simuolators
poasess no capabilities lor uneertainty analysis and probabilis-
tic (stochastic) modeling, which is eonsidered an fmportant tool
for apsegaing the economic risk associated with & particular
design. Further, the necegsity to synthesize prosesses in the
presence of nncertainties is preater in the context of emerg-
ing innovative technologies, auch ms environmental contral
systems, because the available performance date for these
procars technologies are scant due to little or no commerainl
experience, and the technical and ceonemie parameters are not
well eslablishad. Bacause Lhe conceptual design of any “elean”
chimmical process involves identifying possible  flowshent
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confipurations given any inherent uncerfainties, synthesis
metheds for pollution preventicn mwst alse pddress critical
imsues in process synthesis under oneertainty (stochastic syn-
thesis), as it haa important tmplications for process viability
and other quality measures, such as controllability, safety, and
environmental compliance, Thia article presents an overview
of the siate-of-the-art in process simulation, mathematical
modcling, and optimization for the synthesis of proresses
incorporating pellution prevention options, and addresses
some of the issves relaled to the needs for environmental
eonsiderotions in procoss design and development. Reeom-
mended activities that enuld lead to substantial improvement
in procesa simulativn and modeling and offer some scope
in building efficicnt tools for process synthesis, keeping the
environmental ohisctives in view, are also describetl,

PROCESS SIMULATION: AN ENVIRONMENTAL PERSPECTIVE

Process simnlation is the wuilization of computer asoftware
regnurces to develop mathematies] models for constructing an
accurate, representative model of 8 chemieal process to under-
atand its actual hehavior during regular plant operationa. Tn
the past, process simulation was mainly coneerned with the
development of sephisticated unit eperation blecks to predict
aceurate mass flows of principal components in 8 process. Tn
rocent years, environmental congcinusness and conaiderations
in process design and simulation demand an effort extending
far hoyend the capability of existing process simutlators to
model processes with environmental eontrol aptions. Nowa-
days, environmental goals nocessitafe tracking even trace
compenents (eg, requlting from fugitive emissinna) that affect
environmental complismce or even the socicty’s view of an
environmental concern, hesides providing an imenbory of
the major eompononts through complete material balaneea,
Complying with this demand for models with higher degrees
of dntail for every operation to meet requirements it process
engineering crontes the need for sophisticated computer-aided
process modeling toels to evaluate and screen processes in the
presance of uncertainties in identifying low cost, environmen-
todly (tiendly salutions. Any industry involved in transforming
raw material to nseful produeta and hyproducts (that may be
crvironmentally nmacesptable) ngea such proeess gimulation
tools to model their procosses. Chemical industries involved
in processing orgenic and inorganic material, electric pewar
jindustry involved in the transforming fbeail fuel to produce
anergy for lighting sur homes, biological treatment plants for
waste water are some examplas, whicth depand on aceurate
proceas gimmlation for agsessing the material and energy
flows through the process, so thet the thermal, eovironmen-
tal, and cronomic performance can be estimated. For any
chemical industry, addressing the envirenmental ebjectives
through better simulation, design, and synthesis is the key to
suecessfl plant operation in which emissions are raduced foa
minimum,

Process Simulation Tools

The key componcnts of process aimolation software are
presented to illustrato haw they are vsed effectively and
efficiantly to model complex processes with environmental
controls, The essential building bincks of a process simulaior
pr florwsheeting package aro as follows:

» Date bank: this consists of dnta related to the component
physical properties and enst.

s Thermodynamic models: these are models developed to
prodict the different pliysical properties of the components
under process conditions,

= it modiie models: these are routines that simulate the
different unit operations {distillation, mixiog, splitting,
heat exchange ote.} and processes (reactional.

In addition to these, thore are mathematical routines o no-
merical computationa, and cogt reutines for performing an cco-
nomic analysis of the process,

Ceneral process simulation software is generally sequential
modular, equation-oriented, or simultanecus modular in its
approech. In a sequential modular simulater, the unit opera-
tions and processes are moedules and the sutput stream values
arc computed given the input stream values and the equip-
ment parametors. Bach unit module in a flowsheat ia thorefore
solved sequentially. The overall flowsheet caleulationa in a
anquential modular simulater follow a hierarchical approach.
Thermedynamic madels end rontines are at the bottom of this
hiararchy, followed by the unit speration modules performing
the neeessary material and energy balances hascd on the
thermadynamic proporty routinea, The next in the level of
higrarchy are the design specifications that involve iterative
taleulations around the units, superseded by the recycle
iterations for slream convergence. The utilities like optimina-
tion eceupy the highsst level in the ealcuiation hierarchy in the
geguoniial modutar framewark. This particuler nature of the
hierarchy and the presence of recycle streamea and deaign speci-
fication oparations resulis in inefficicncies due to the Worative
calenlations that need o be performed. Consequently, sequen-
tial modular simulators lack thae flexdbility to perform design
and optimization tasks becauge of the way the calenlation flow
i strustired in the simulater. Nevertheless, the sequential
modular approach is relizble, easy to spsemble, and since
each unit is solved individually along with ite thermodynamie
models tother than simmlianesnsly with other unite, it i=s more
robust, partiealarly if the medels are nonlinear. On the other
hand, hecanse the efficiency in convergence and optimization
depends on the amount of information available from the
flowsheet fand locking in sequential meodular aimuolators),
other types of simulators {eg, equatin-oriented) came inta
existence. A equation-eriented procesa simulator uses a sei of
nonlinear equations representing the process madutes, mass
and energy halences in the process, and schves them simulta-
neonaly. Although, the equation-orietited simulatars are more
flexible in terma of information fiow, they lack robuatness.
The simultanceus modular approach adepta the sequential
modular appreach {ie, the cutput stream values are cornpuber
from the input stream values and eguipment parameters),
hut also require solving a get of linear equations relating the
nutput values approximately to a linepr combination of input
values for each module, This relationship of the output stream
values to the linear combination of the input stream values
results in finding linear eoefficients thet medel the unita for
any changes in the inputs through succezsive iterations (41
The main advaniage of this approach is that if some of ihe
input values are unknowns, they are computed from the speci-
fied output. stream vabues, if the input and outpot varisbles
constitute a seb that tead to 2 solution. A cemparison of the
differant typos of simulatora shows that the exeeetive program




thet contrals the wser input, collects the problem description,
and performa the execution is easter to write for sequential
moduiar simulators than for equation-oriented simulators.
In conirast, equation-nriented sinmlators are mare flexibla,
allowing ugers to wrile Lheir own process model equations,
although the solution procedure can be extremely complicated.
The fact that equation-oviented simlators are more tedious
in their usape probably explains why most commereial simu-
laters are sequential modular in nature. Process simulators
ara Alan clasgified on the basis of the nature of the procesaes,
1, whether the processes being considered are steady-state
or dynamic, Aceoedingty, steady-state va, dymamie simalabors
arise for modeling contimions type processes. A list of eomman
process simulatora and their assneiated references is presented
in Table 1. Although this list is by no means oxhavstive, it
shnowra some of the aimulation software used in the past and o
a greater ur lesser extent at present to model complex chemical
processes. A brief diseossion of some af the recent trends in
eomputer-gided simulation isin (14)

Tniroducing environimental considerstions in process design
and development leads to & avathesia approach for evalualing
and screening the various alternatives for environmental con-
tral. Before process simulatinn is performed to evaluate the po-
tential of candidate technalogios, it is nocesaary to outline the
Ayntharia tagk, the firat step in the design and developntent of
large acale environmentally friendly processes.

SYNTHESIS APPFROACH TO POLLUTION PREVENTION

The synthesis approach to pollution prevention is clpssifted
in throe eptegorizs, namely (I} koowledge-baged approach
2} thermodynamic approach and (3} optimization appreach.
Adwanees in knowledga-based approaches applied to process
aynthesis imvolve methods, in which particolar pollution
prevention iders ara tranaferred from ane proeess to another
(14158}, and artificial intelligence for aimulating human
thought processes for developing environmentally [riendly
chemical processes (1G], Ferhaps, the most systematic
kmowlodge-haged spprosch is the hierarchical decision pro-
cadure that involves a iogical sequence of process lowahest
evolutions {17}, In thia procedure, the esszential dessions
for developing s flowsheet at eech level are identified, and
il theas decisions are altered, then process alternatives are
generated. Thia 8 usoally folinwred by an ecomomic shody
of the different sliernatives, go that only the viable process
nptinne are congidered for the next evolulionary stage, The

Table 1. Pracasy Simulation Taals

Simulation
Packopn Type Feferencen
FLOWTRAY Bemential mndular i)
FLOWEFACE Tt Sequential mndular ]
FRO I Hequential mndular T
Iprevisualy
PROCESS™M)
ASPEN Bequential madular &
JrEEDRUE Equatiem-ariented ]
AACENID Equation-ot-lented in
sPROMS Eruatiom-risnter 11,
MODEL.LA Euation-orienied 1z

FOLLUTION PEEYENTIOMN DESIGMN

775

Separation and
recyc|e systemn

Haat exchanger
netwatk

Utilities

Figure 2. The “enion® model. Adapted from Ref. 18,

hierarchical approach has also been represented by the *ondon
madel” (158}, which characterizes the synthests task a= a sot of
nezted decisions pertaining to different operations, as depicted
it Figure 2. Bacanss the reaction aystem iz the key component
in tranaforming the raw materialy into valoable products, it
forma the core of the synthesis exercise. The reaction aystam
definea the nature of the soparation and recyeling syatem,
which in turn, {infleences the desipn of the heat exchanger
network. Any exeess requirernent or defieit related to the heat
content of process atreams muost be handled by the hot and tha
eald utilities, affecting the desipn of the ntility system. fuite
recently, a aimilar procedura was outlined by for the synthesis
of processes, keeping in view the environmental objective of
minimizing waaste in prooeas industries (190, The procedurce
relaled to process synlhesrs for waste minimization follows
a hierarchical approach, similar to the “onion model®, and is
summarized in the following parggraphs:

» Level I: List input information. In this level, infrorma-
tion regarding the production rate, product value g
purity, reaction rates and conditions, taw material easts
atd streams, produst distribution, catalyat properties,
proceasing consiraints, plant site and physical property
dals, dala conrerning safety, toxicity and environmental
impact, and cost datn for the bv-products generated
fincloding the “wsaates”, which have negative sconormic
value} are obtained,

* Level 2 Dafina input—output atructure of the Flow
gheet, The decisions thal most be considersd at this
level pertain to the need to povify the fead atreams,
whether to rooowar and recyele gome of the reae-
tanta, and the neceasity of recovering and recyeling
by-prodocts  formed by secondary  reveraible Teae-
Lions. In cases where waste minirization problems
are caused by the reactinn chemiatry, it iz recom-
mended that alternate pathways for transforming the
taw materinla be investigated.

* Leve] 3: Bpecify the recycle atroctures of [low sheet. The
recyeling decisions depend on the excess reactant ot the
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renctor inlet, the addition of a diluent such ms steam
to shift the equilibriuth or ast as a hest carrier, and
the need for adding an oxternal solvent to the proeess.
Prohlems caused by adding diluents add solvents must
be eliminated by changing them in favor of a guitable
solvent, given the environmental ohjeetives of the procesas,
a Level 4: Tdantify the separation systems. It is desired that
the first attempt in the synthesis of a separation aystem
involve phase splits. If phose split is not pogsible, other
types nf separation systems are slso used. For example,
vapor reeovery sygtems are used to prevent valuahle com-
ponents {from leaving the process with gaseous streams.
Liquid recovery systema are used to separate componeTnts
hetween phases or to separate liguid mixtures. In this
context of separation systems, distillation is the mosi
preferrad from a poilution prevention yiewpoint, because
pther means, such as the use of extractive agents like
water in linuid-liquid extraction, often result in pollution
problems, Other liquid sepsration precedures, guch as
adsorption in removing colored materiala from liquid
gtremms, result in the disposal of spent adsorbents in
landfills. Solid roeovery eystema, much as filtration in-
volve cake washing (using water, for example), resulting
in addifional water treatment faeilities.
= Level A: Evaluato the alternatives, This is guided mostiy
hy economic considerations influenced by environmental
abjectives. The main drawback is that the ovaluation and
sereening task beeomes tedioua in the presence of aavoral
alternatives.
Level & Flexibility, control and safety. This level involves
decigion= related to the operability, controllability, and
gafe operation of the plant.

The hierarchical approach, based primarily on heariatic
methods, relics on intuition and cngineering judgment for
guick selection of allernate process confirurations. Although,
this is an advantage in the generation of alternatives, the
golutions that some henristic rules prediet are poor. Further,
heuristic rules may contradiet one another and may roquire
assigning arbitrary weights to resolve conflicte.

Thermndynamic approaches to process syntheais for waste
minimization are related to pinch technology. Pineh technal-
ogy started recciving artention in the early 19704 when the
energy crims affected the chemical process industries. At thet
time, pinch technolagy utilized information about heal; {lows
throuph the process and identified opportunities for energy
agvinga by allowing heat transfer between pracess atreams,
theraby reducing external requirements for hot and coid
utilities (20). The inclusion of pinch technology for proceas in-
togration leads ta an interesting nuteome. Process integration
through pinch technology results in energy savings {which waa
the main poal in the early 1970s), and it alan leads to wastn
minimization and emission reduetion. Commercial aoftware
in the area of pinch technology has been developad {ADVENT
ftom Aspen Technology, Tne., SuperTarget from Linmheff
March, ste), which assessea the trade-nff between energy
conaumption and capital coat for a ayatem of heat cxchanger
natworks, In recent years, the concept of pinch analysis has
alao heen extended {0 mass transter applications, where mass
concentration gradients [ag opposed to temperature gradients
for heat transfert are nsed to transfer nndesirable BpEcied

from a number of waste {rich) streams into a number of lean
gtrenms that are regenerated and revacd (21). ;

The complexitics of chemical processes involving atvi-
romunental implications and the vast majority of promising
eandidate techmologies are inhibiting in the scresning and
sclection procedure for "optimum” process technelogies, This,
coupled with the fact that numeric computations are legn ex-
pengive because of the state-of-the-arL in computer hardware,
hag resulted in the mcceptanec of optimization approaches
for cvaluating and screaning the candidate technologies to
identify the beat aption based on any given criterion.

Omptimization Approach to Process Synthesis

A methadology to pollution preventien through process ayn-
thesia pconsistent with almost any simulpiion environment
iz based on an algorithmic approach. The main idea in thia
approach is to formulate the synthesis tos=k a8 an aptimization
problem. Thiz approach involves integrating sophisticated
optimization techniques inlo proeess gimmulation modals, and
requires an explicit or implicit representation of a apecified
set of process alternatives from which the optimal solulion
ig derived. The main advantage of this approach is that cost
cguations are incorporated aa part of the modsl-optimization
structure, providing a more systematic framework for bandling
a varicty of aynthesia problems and indicating how design
decision variables affrct process economics. Early approaches,
bpsed on optimization, which were applied to a number of
waste minimization problems, depended on mathematical
modals to develop cost vs cmission limit curves (1), These
ensbled cnginesrs tn understand the effect of fundamental
process changes on tha cost and amission lavels, which were
then used to define the least cost-intensive means of achieving
any given cmissions target. The algorithmic approach has the
important property of generating alternate process configu-
rationa autometically and has besn gmining much interest in
recent yeara, Although, this approach peses some difficulties
{all the alternatives must be determined e priori by heuristic
and knowledge-baged approaches, the computations ara time
consuming for a problem not. well formmlated, and the optimal-
ity is guarantesd only for the alternatives conaidered i thea
overall problem representation ete.), an algorithmie approach
hased on optimization strategies ideotifies subtle differences
hetween the alterniate process bechnologien and therehy selacts
the optimum proeess oplion.

A Mathematical Programming Approach ta Process Synthe-
sis. A much more autemated synthesis approach to pollution
prevention ig hased on mathematical programming Lech-
ninues, which, by virtug of the advaness in the ficld ol
compaiter hardware and software, have gainad much promi-
nence and have led to the development of rigorous modeling
and optimization capabilitier. The mathematical program-
ming approach to prosess synithesis ia sirmply stated as followa:
Civen g get of structural alternatives o optians in & process
{a st of ervironmental control cptions to remova etniasion{a},
a get nf heat-exchange network configurations, a et of sepa-
rating system configurations for removing trace amounts of
a pollutant for reuse or regenerstiond, an ohjective {process
costy, and A set of constraint(s) (maximum allowable afflnent
generated by a process), the goal 1s to find the optimum con-
figuration for the process flowsheet. This ia alao referred to na
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structural optimization. The synthesis problem, however, goes
beyond eelecting a suitahle stroetural configuration for the
process. [t aleo optimizas certpin paramatric conditions sgg0-
ciated with the various process nperations, thereby improving
the process tn attain the desired ohjective. Thin stage ia re-
ferred 1o a3 parareiric opiimtizeiion and most be performed
along with structural optimization te complete the synthesis
task. To cite an example, canafder Figure 3, which shows the
key steps in a typical electrie utility syatem generating energy
from n fossil fuel. After gasification, the [usl gas must be
treated to remove aalfirrons compounds befrre i enters the gos
and steam turhine sectfons of the process. In prineiple, thia is
achieved by the different sulfur-removal strategins in indus-
trinl practica rosulting. in alternate process configurations,
Furthaer, becavse each of these structural alternatives involves
gevaral process operations, to oplimize the entire process, the
npereting conditions (ie, pressure, tomperatura, ofe) in the
altcrnatives themaelves must ba nptimized. The performance
index, tn this cage, may very well he the oversall coat of the
process, wherzaa the environmental conslraint may be such
that. the tatal amount of sulfiur emitted by the process musat be
leas than a threshold number set by legialative actions.

The mathamatical formulation of sich A synthesis problem
for pellution prevention ts exprassed as follows:

Cptimize & = 2(x, )
z,y Suhjoct to Mx, ¥} = 2
gle,y) = b

where Z is the abjective funechion of interest {ep, process eost),
a ia the set of desipn {decision) variebles for the continuous
perametors (pressure, temparaturvs, etel negosinted with a se-
Incted alternative, and ¥ is the get af discrete parameters (the
various optiong that eonstitnte the stroctural alternatives).
The set of constraints Aix,y) refers to the process equations
that gevern the unit operations end processeas, whevags the
constreint sct g,y mey imply environmental constraints (eg,
tha total waete generated in the process must be fess than a
maximnm allowable value) associated with the given proeoss.
Although, the mathematical formulation appears simple,
the =olution procedure for solving this diserete-comtimous
problom i complicated by the inherent nonlinear behavior of
mpest phyeieal systema. Conseguently, thie lield has been the
focug of research in recent yeara, A detailed treatize of the
methodology is presented elsewhere (223, and only the salient
featurca arn presanted hera to illuetrate how the method-

Figure &, Synthesis task applied to
electric ubility system.

ologied are applied o design proceszes with environmental
control ohjectives.

The discrete-continuons optimization problema defined by
the frmulation above are commaonly solved by mixed-intepsr
nonlinear pregramming (MINLE) alporithms. A elaas of
MINLF aslgorithms addressing such problems in chemieal
prucess industries 15 designed so that the objective fine-
tion and the conatraints, ohtained after aolving the process
model, are linear with respect to the diserele decigions and
nonlinear with respect to the contindous decigion variables
{23). Figure 4 shiws a framework for =olving a larga class of
diserete-pontinuaus problems using A mived-integer, nonlin-
car (MTWLP} programming technigque, where the objective
function ig linear with respect to the discrete variables and
nonlinear with reapect to the continuous variables. The
MINLP solver belonging to this class invelves solving an alter-

MIMLP formutation

£ = min Ci{yx)
B
subject to Afwx) =90
vl =0
M. n Mew ¥,
yelQ 1% ze B fixed binaries

¥

Initializa NLP
binary vars {¥) subprablem  — Upper bound
(continuous apt,)

Linearize oh|. and cons.

MILP
master prablem
{discrete opt.)

— Lower bound

Lower bound = Upper Bound

Figure 4. A MINLP framework for aelving dizerete-continuaus
optimization problems.
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nate sequence of mixed-integer, linear peogram (MILP} master
problems and nontinear (NLP) subpreblema. The MILP master
problem {outer loop) predicts the integer or binary decision
wariakles which select 8 pracess eonfiguration from the several
candidate alternate eonfigurations. The NLP subpreblom
finner loop) optimizes (e continuous variables aseociatad
with the flowshest configuration selected by the MILP master
problem. The NLF subproblem analyzes the ahjectiva funelion
and constraints after the procesa model is executed and pre-
dicts the new continuous variables. Onee a NLP solution is
cbtained, the ohjective funetion and ennstraints are linearized,
and this lincarization information is transferred to the MILP
master problem, which then pradicts another process eonfigu-
ration. A solution to the complete MINLP probiem is abtained
when the upper {iower) bound from the NLP subproblem is
lower than the lower (upper) for a minimization {maximiza-
tion) problem. Although, MINLF algorithms are particularly
well suited for equation-oriented =sirmilalors, rocently they
have also hecn extended to sequential medular simulators
{243, Nevertheless, the complexities related to the inhcorent
nontransparency ar “black-pox” nature of sequential modular
simulators (26), suggest that a combination of combinatarial
optimization techniques, such as simulated annealing and
nonlinear programming, arc a promiging tool for gddressing
discrete-continnous aptimization problems within a sequential
modular environment.

In tmost onses, the altcrnatives eonsidered for the fingl
MINLP aynthesis stage are developed primarily by a hier-
archical design procedure, [ollowed by process integration

.ng pinch technology. Thia strategy, based an a combination

‘nowledge-based, thermodymarnic {pinch technology) and

. ..thmie approaches 12 more mppropriate for large-aeale
problems Involving pollution prevention and integrated envi-
ronmental contrel options, Recently, a methedology combining
hierarchical design procedure, thermal integration, and an
MINLE-hased synthesis approach waa used for an econnmic
evaluation of a process retrofit through waste minimization
and process integration {26). The [ollowing paragraphs present
an fllustrative example of the synthesis of an integrated gamiti-
cation and esmbined cyvele (IGCC) system for power generation
incorporating integrated cnvironmentsl eontrsl options hased
on the MINLP procedure outiined previcusly.

Example Ar Syathesis of imtegrated Gasification apd Com-
bined Cyele Systems for Power Generation. There is significant
interest today in the ability of integrated coal pasifieation
- cornhined-gyele (IGICC) pystems to provide clectricity raliably
and at lower coat relative to conventional fosgil fuel. The abil-
ity of TGO ayatema to meet siringant environmentel ernigsion
atandards iz mnother pitractive featurs of this technology,
Enviranments] control systems, however, acenunt for a signifi-
cant part of the eost and complexity of IGCC systema. Current
syatems roquire eooling the gas stream prier to cloanup, thus
generating a signifieant wastc water stresm which musat be
treated in addition to the air pollutant and solid waste streams
normally essociated with coal-based clectrie power generation.
Hot-gas cleanup syatems offer the potantial for aignificantly
simplifying and reducing the cost of enviranmental eontrol for
many IGCC gystems. In addition to the technical aspeets of
IGCEC techonlogy, thore is alse a strong need for “systema” re-
gearch to identify the best wave of configuring IGO0 syatems
and of inenrporating advanced eleanup and other technelogy
to produce clectricity at minimum ¢ost. For exampla, the most

common design for sulfur removal using hot-gas eleanup is
throngh the use of aolid sorbents. Sulfor captura accurs gither
through the addition of a solid reactant in the gasifier le, in-
hed desullorization), by external desulfurization of the flue
aas {eg, zine ferrite process), or by a combination of these two
methoda,

The firat step in solving the process synthesis problem is de-
veloping the superstructure containing atl alternative designs
n be considered fir the optimal solation (37). The superstruc-
ture for the three sltarnative desulfurization sonfigurations
for the advanced IGCC system is shown in Figure 6. Thereirg
total of three additfons] splitters, one additional mixer, and aix
binary decision variables, ie, two decision variahlos (branchea)
per node, Bach binary (0-1} variabla represents the prosence
{y = 1) ar absence {y = 0} of the branch assaciated with that
varisble. At the first node, the two decisions invelved are in-
bed desulfurization (y; = L)or enly externdl depulfurization by
the zinc ferrite process (y; = 1} Because these twn decisiona
are mutually axclusive, the following constraint is added to the
optimization problom:

ntmw=1 (1)

If in-hed desulfurization iz selected, then, ab the seennd nade,
there ia  chaice of the zinc ferrile process after in-bed desual-
furization (y; = 1) or the cyclone separator marking the end
of the desulfurization section (yg = 1. These Lwo decizions are
alse muteally exelusive and apply enly inthe presenea of in-bed
desulfurization (y, = 1}. This leads to

mtm=n (Z)

The last node in the desul{urization process cxists on the
mne forrite branch, If the zine ferrite process is selected,
the dapigion about whether the 3Qa: should be recycled
{ys = i} or passerl to the sulfuric acid plant {w=1} in
dacided at this node. Again, these events aro mutually ex-
clusive and are considared only whan the zine ferrite process
ip selected (yy — 0). The recycle slternative is applicable
only for combined in-bed and gas stream desulfurization
(¥, =1, yo = I). Coupled with the znc forrite-only  op-
tion §s the prosenee of the sulfurie acid plant {3 = 1.
These conditions sre represcuted hy the following logieal
constraints

¥t =1l—m {5

¥w=» (4

The six binary decision variables along with the abova four
congtraints (eqe. 1-41 resuli in three feasible alternative
technologigs:

1. In-bed desulfurization plos cxternal “polishing” by zine
forrite deanlfurization:
¥, =1i10,1,0,1.0

2. (las siream desullurization ondy via wine ferrite with
hyproduct recorery:
Yﬂ - (D,l,ﬂ,ﬂ,{},l}l
4. In-bed desulfurization only, via limestone or delomite
imection:

Y!! = {l'rﬂr 0: Isﬂfﬂ:]
Ag a1 example of implementing the binary variables, con-
mider the hinary variable yi. Thiz variable is introduced into
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Figore 5. A supersiructnre incorporgting il of the possible alternative confipurations

for the IGCC example problem.

the appropriate performance and cost model equatione to rep-
rezend the prosence of unit eporatinns associnted with sorhent
handling, Thuas, sssuming that the direct capital cost of the
limestone handling section, for example, is given by

DOp « (1160 + 0.026 mp) (5}

where my, is the mass flow rote of limestone used, the use of
binary variables results in .

DCy, = (1160 + 0026 m.) (8]

This imnplies that, if in-bed desulfurization (using limostone) is
selected, then v = 1, and the capitel cost of the in-hed deanlfie-
rizetion section is enlenlated fram equation 6. Otherwise, if the
in-bed deaulfurization section is not selected, then yy = 0, and
the capital cost of the lirmestone handling seetion iz 0. The other
binary variables are applicd similarly to the equations used to
oatimate annaal costs and performances (thermal and environ-
mentel} for tho affected procass ATeas.

The purpose of this exercizge is to oblain a Towsheet configu-
rabion and desipn variables which minimize the lovelized coat
ol eleclricity, given an environmental constraint on total sulfur
CIIFsIinne: 0015 Tb 8O

Bsor £ ~ 05 gy (7
The eontinuoud decigion variables gelected for this prafiminary
gtudy are the in-hed desulfurization efficiency (1,), the zinc
farrite absorption cyele time {¢,), and the maxmum vesacl
height to dinmater ratio {£./5% for the =ine ferrite sbaorbera,
Tha in-bed desulfurization efficiency determines the limestone
garhent requiverment and removal of reaidual sulfur evolved in
the zine ferrite process area. This variable is allowed to vary
up to 0% per pasa of gagificr sulfur romoval. In the phsence
of sorbent ahout 15% of the sulfur is removed in the gasifier
bottom agh. This gives the lower limit for the efficiency. The
gine ferrite abaorplion cyele time 18 allowed to vary from 30
lo 172 h and the zminc ferrite wessel height to diametor ratin
ranges from 2 tn 4,

Tha MINLF prablem at. this stage consists of three continu-
oug and Bix binary decision variables, the shove four equal-
ity constraints for the binary logical variables (eqs. 1-4), the
environmenlal constraint on total sulfur emissions {(aquation
7}, and three inequality constraints {cqa, B=10} for the throe
eontinuens decision variables, which are related to the hinary
wariahlea via upper and lowar bownds:

0.16 = 7, = {076y + 0.18) {8
30y + ) = 8, = 172y ok 35) {9
2y + 3 = L/D = Myy + 1) {10}

The optimez] flow sheet ahtained with the MOVLP algorithm is
showm in Figure &, Given the environmental constraint that to-
tal 80y emissinona st e leas than or equel to 0015 1b per
10" Btu of coal throughput, the in-hed desulfurization scheme
is infeasible. The results for the difforent stroctiral and para-
metric alternatives are shown in Tahle 2, If 18 warth mention-
ing hera that independent evaluation by Jouthern Company
Serviees shows that the hybrid syatemn inpolving both in-bed
and external deavliurization 14 required to achievs the desired
environmental’performance goals. The fact that mathemati-
cal pragramming mothodr alao predicted a similar result in-
dicates the potential of eaing an optimization-hpaed symthesis
approach lor designing and developing processes involving en-
vironmentsl control strategics.

Rerent studies with dispontiminus ohjeetive funetions
reveal that probabilistie techniques for solving targe-geale,
combinatorial problems, sueh as simulated annealing are
well-suited for synthesia applications in a sequentisl modular
simulalion environment (28). A methodology combining simu-
lated annealing and nonlinear programming (3A-NLF) s
enmplamentary to MINLTF spproaches and presents o robuesi
technique for the aynthesia of large-scale proeess Flow sheets,
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Figrure 6. Optimal design configuration for the IGCC flow sheet example,

Table 2. Aliornative Seenarios in IGCC Design Exampla Prohlern

Desulfurization Ahsorption Cwela ool of Electricity,
Techrnlagical Alternative Eifficicney Tirne, L Mazximum Lerngth/THE. millshWh?
In-hed + ext. dasulf, n.29 1B0.5 it RN
BExt. deanlf, 0.15 an 2.0 62.30
In-bed desulf. Infempible Mot applicable Wot applicable Tnfienaibla

f Qe maall iz equivalent ta 1711000 173, dellar,

I this ease, the simulated annealing algarithm prediets dis-  onergy state, hut rather atéains a polycrystalline or amor-
erete eonfigurations, which is predicted hy the MILP master phous stale with high energy.
problem in a MINLP algorithm. Nevertheless, although the re- In the context of an optimization preblem where the deei-
sults produced by tire SA-NLP and the MINLF approaches are gion varinbles are integors, the ohjective function is Analogous
gimilar, an MINLE approach for a well-formulated preblem i to the energy of a phyaical system. The aim of such a problem
less time-consuming than the SA-NLP approach. The SA-NLP  is to minimize the obiective function (energy), Efx), where
approach, hewever, is more amenable as a synthesis tool ib 8 X = {x1,%,%x), Fepresents a particular configuration of the
sequential modular simulation environment. aystem. In o typical synthesis applieation, & particular aet
x ropredents an unigue process alternative. To observe the
behavior of the system, the system is perturbed from its
A Simulated Annealing Approach to Process Synthesis. Simu-  present confipuration to ancther configuration by chenging
Inted mnnealing is a heuristic approach for solving combina-  any element z, fn the vector set x. Thig iz referred to As a
torial optimization problems, complementary to techniques  neighborfiend move. The hehavior of such a system subject
for solving MILP problems, such as branch and bound and  to a neighboriiond move is determined (rom observation of
cutting plane metheds, I is n probabilistic methad based on the objestiva function. For a minimization problem, if the
statistical mechrnics, a branch of phyaica that deals with the  configuration results in a lower energy state {or ohiectival, the
behavior of physical spstems with many degrees of freedom.  move is always acespted. On the contrary, if the move resolts
Physical systems, such as liguid metals, frecze and erystallize  in a higher crergy state, the move is sfill areepted aoeording to
or "anneal” s the lemperature is lowerad. At high tempera-  acertain probability given by the Metrnpolis algorithm (23], A
tures, the maleculos of liquid metals are more thermally mo- peeudocode of the mimulated annealing algorithm is outhined
hile. T such & aystem is caoled slowly (ic, annealed), the atoms e follows.
arient themselves {o form pure cryatals, thus attaining the Tnitialize variablos: Thups (initial temperature or initial
lowest energy tate of the system. On the contrary, if the liquid  energy level/objective funetion), secept end reject limits or N
metal in cooled (ie, quenched), it does not reach this minimum  {number of allowahle moves al a temperature}, initial conlign-




ralion eet x;, and ohjective funetion Ohjfx,}, while T (current
temperature) > Tpaenclo, whila [ < N do, generate a rendom
move X' by perturbing x
AObj = Obilx") — Objix)

If ADW = 0 or randomiD, 1) < expl—AOL{/T) then accept =x,
x = x', update mumber of aceepls and rajects until equilibriem
iareached at T, when § = Nl update Toppe = T8 = o =
0.98) until T = Treaza-

At each terperature {energy loval) of the aystem heing opti-
mizad, a large number of moves, decided a priori, are allowed,
The temparature is then lowerad and the process continues un-
ti] no further improvement in the ehjective funetion, within a
given tolerance, i attained. Ae the temperature ia lowerad, the
probability of making nphill meves defined by the Metropalis
algorithm decrsasea, Simulated annoaling uotilizes these ran-
dom uphill jumps at initial high-temperature stages to enaure
that the aystem is not confined to a local minimom. In ather
waords, moves which are highly probable are rejected, and vory
improbable moves are accepterd occasionally, By suecessfully
lowering the temperature, it ia pogsiblo to simulate the system
attaining equilibrium at each newly reduced temperature, and
thns mimie the physical annealing process. The advantage of
simulated annealing ner MINLP-baged techniques is that it
can be applied to nonconvex fonetions, does nat require gradi-
ant information (which may be onohtainable or difficult to com-
pute}, and offers the possthility of a ratidom jump out of a Jocal
minirmum g0 a8 to attain global minima. A pictorial description
of the annealing procedure is shown in Figure 7.

The techniques ouilined in this scction meel some of the
needn for chinmical procesa design for the environment and pro-
vide the toola for process synthesis and optimization to prevent
pollution. The following example illustrates how a eombined
gimulated annealing and nonlinear programming approach is
applied to synthesizing optimal wasate blends for hazardons site
raradintion.

Example {: Environmerdal Restoration of a Hazardows Waste
5ita. Badicactive waate produced by nuelear proceases is clas-
sifted inte low fevel and Rfgh lovef fractions bared on the
content: to ha immobilized for future disposal, Tt is desired ihat
the high lavel waste is corverted to borosilicate glass for ator-
nge in & geologic repository, becanse radioactivity doez not
ansily feak threueh glasa. This process, termed “vitrifieation”,
roquired datislying certain conditions related te "procesatbil-
fty™ and *durability,” 40 thai the conversion is achievable, The
ronditions of processibility ensure thak, doring the processing
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stage, the plass meli has propertica such ag viscosity, elec-
trical conductivity, and liquidua temperaturc within ranges
acceptable for the vitrification process, The considerations af
durability ensure that the resultant glass meets the quantita-
live criteria for storapge in A repository.

The site has 177 tanks with enpacitics ranping from 50,000
to 1 million gallons. During the vitrification process it is
required that the wastes in the tanks and approprizte gless
forms (frit) are mized and heated in a melier to form glass
that satisfies the constraints. The main objective is to add
the minimam amount of frit and atill schieve reclamabion of
the wagtes. This has major implications, First, thiz keeps the
frit costs to a minimum and =econd, the amount of waste per
glazs log formed is magimized, thus keeping waste dispnoaal
msts to a minimum. The minimum amount of frit is weed if
the high-level wastes are comhbined to form a single wasie for
the fieed to the vitrifiention process. Unlortunately, the large
wolume of waste and the time period over whigh the waste
needn to be processed, makes this a humengous tesk. The
esgential prohlom then s to chooge the proper set of wasles in
the tanka to form biends and add the right amount of each of
the frit components to the blends, o that the total quankity of
frit required ia minipum.

Figure 8 iy a pictorial deseription of thia vitrifieation prok-
lem. ¥ difforent waste aourees or tanks must he blended to-
pether to form a discrete number of blends B, It ia required that
off the waste from any piven tank must combine with other
wastes to form a single hlend, each blead containing wastes
from N/ B sources. Further, if o™ is the mass of the ith compo-
nent in the waste, % the mass of the ith compeonent in the frit,
and g the mass of the ith component in the glass, the follow-
ing equality eonatraints resuli:

g[il = il + f“] {113
L
z=>g" (123
i1
itk
i _ 8
Fa a (13

where 7 ia the lotal mass of the glass formed, # is the total
number of components, and fg” denotes the fraction of the ith
component in tha glass. The femation of glass from the bleod
i governed by socveral constrainds, svch as component bouads,
eryatallinity eonatraints, solubility conatraints, and glrss prop-
erty constraints, For a small subact (21) of the tokal number of
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Figura 7. Simulated annealing proeedure,
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Figure 8, Schematic diagram of the vitrification problem.

tanks to b partitioned into three blends, there are 66,512,160
possihle ways to form the three blends. This number poses an
mverwhelming problem for enmmon scerch algorithma ta deter-
mine the nptimal blend eonfiguration.

A two-stage approach based an SA-NLP was propozed to de-
termine the optimal blend confignration (30}, /A schematic dia-
gram of the solution provedure is shown in Figure & For the
2)-tank problem, the discrete deciaions invelved the distribo-
tion of the tanks among the three blends. This deciston is gen-
crated by the outar loop of the SA-NLP algerithmic procedure
and ia formulated a5 a minimization problem:

d 1]
Min Z Z j“ (A formulation)
J=1 -1
This formulafion is interpreted as minimization of the total
amount of frit over a given combination of blends, whare f‘;“
iz the mass of the ith component: in the {rit for the fth waste
blend, and n denotes the number of componenia. Onee the blend

7

Input annesling
parametears

Optimal design

. . Stmulated
configuration

annealing

Feasible Discrete decision variables
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Figure 9. Coupled simulated annealing-nonlinear program-
ming {SA-NLP) procedure for solving discrete-confinueus opti-
mization prablema.

Model

iz fized, the resultant NLF problem ia formulated na followm

MinS 1 { i fixed) (NLP formulation}
=1
auhjert to equality constraints {egs. 11-13), individusl eompn-
nent bounds, cryslallinity constrainks, solubility censtraints,
and glasz property constraints.

The combined SA-NLP approach identifies on optimal so-
lution (11,025 kgs) which ia lower than the solution predicted
by heuristie (knowledge-hazed) approaches and GAMS-hased
MINLP methods. This optimal salution waa further verified by
a branch and bound strategy to confirm the plobal optimuom,
showing the potential of the SA-NLP for the synthesis ol large-
scala processes involving environmental implications,

The problem formulation above represents a simplified view
of the aetual problem, becauge it azsumes that ail the data per-
taiming to the input quantities are constant or known with cer-
tainty. The very nature of environmental problems demands
an uncertainty analysis due o the inherent uncertainties of
many environmentsal processea. This, in turn, leads to the syn-
thesis of processes with uncertainties. The following section
atldrosscs key issues in modeling procesace with uncertainties
and presents an integrated framework for stochastic (proba-
hilistie) mndeling. This framework {llustrates how determini-
gtic simulators are nacd effectively to model processes with
inherani nncertainties,

STOCHASTIC MOGDELING OF PROCESSES

Clonventional simulators typically employ & Fortran code which
produces determiniatic {point eatimate) results for a pariicular
set of Input assumptiona. Such an approach is simplistic and
nrrealistic, leading to the incorporation of farge safoty or
“fudpc” factors to accommedate the nneartainties in equipment
design and resulting in over-estimated thermal, environmen-
tal, and economie performance indicies. Chomical plants are
usually faced with uneertain conditions during their oparation,
Theae nneertainties arisa from variations in external parame-
ters, such as the quality of feed streams, or frum internal
process paremeters such a3 transfar coeflicfents, reaction con-
stants, and physical propertiss, If the technolagy is new, there
are additional nneertainties due to limited performance data.
The ahility to analyze uncertainty i2 especially important for
ongoing research and development, whers technical and ceo-
nomic parameters for individual processes and system deatgna
are naot well established. Uncertainty analysi= is also impor-
tant in comparing advaneed system designs equipped with
integrated environmental control strategies with “baseling”
aystoms reflecting enrrently commercial technology (311,

To analyze uncertainty, the capability of performing sen-
sitivity analyzis through a serics of multiple runa is wsally
available. Typically, however, only one or bao parameters at
g time are veried in a simulation framevwsork which eontaing
a large number of independent variables. Thus, important
interactions or cascs may be ovarlooked. Although, larger
number of cases may be run as part of a sensitivity study, the
wolume of output generatod makes reaults curmmbersome or
diffienlt to interpret andfor display. Even whern many cazes
are analyred, acnsitivity analysis still provides no information
as to the likelihood of different outcomes, In short, because
the process analysia of real syatems requires an uncertainty




anply=is, enhenced probabilistic modeling capahilities most be
fevelopad in eommereial procesz simulators, The fallawing
paragraphs pregent a brief overview of the methodology vaed
to pnalyze the uncertainties in processes aystematically in
a general probabilistic modeling framework. Koy izaues to
bear in mind during stechastic modeling of processes are alzn
described.

Statistical Terms and Hewristics

The uncertainty or variability in engineoring models can he
axpressad in terms of probahbilistic distributions. The probahbil-
ily distributions show the range of values a variable enuld take
and the likelihood that each value oecurs within the range.
Thus, the diatritartions define the rule for describing the
probabilify measures associated with the values of a random
(aneertain] varighle. Probability distributions are deseribed
in their entivety as cumulative distribition fonctinns ar by
selectad parameters, such aa fractiles or moments (eg, mean
and varianes], A more eomplate review of theae methods ia in
the literature (32}, The following sections present key concepts
utilized in the probahbilistic modeling of advanced eqntral
technologiea,

Specifying Uncertainty Using Probability Distributions. To
accommadate the diverse nature of uncertainty, difforent dis-
tributions gre wged to represent the uncertain parameters
in a procese, as shown in Pigure 10, The type of distribution
choaen for an uncertain variable reflests the amount of infor-
mation available. For example, the uniform and loguniform
distributions represent an agquatl likelihood that o value lies

Beta Marmal Lognarmal
1
g | |
: | |
Unifarrm Uniform Lagunifarm
Laguniform Triangular User-specified

A D

Figure 18, Typical probability disteibotions used in ato-
chastie (probabilistic) modeling of processes. Note: The
heta-distribotion ean have different forms depending on the
parameters chosan, ag shown in the shapes 1, 2, and 3 of the
beta-distribution.
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anywhere within a specified range, on either & linear or loga-
rithmic seale. On the other hand, the madified forme of theze
distributions, uniform and logunifarm, allow distinguishing
several intervals of the range. Further, a npormal (Gauasian)
dirtribution raflects A symmetrie bt varying probability that
a parameter value is above or below tha mean value. In eon-
tragt, lognormal and triangular distributiona are skewed ac
that there iz a higher probability that values Lie on one side
of the median than on the other, & beta distribution provides
a wide range of shapes and is a very flexible means of repre-
senting variabiligy ovver a fixed range. Finally, in some speeial
casps, user-specified distributiona are vsed to represent any
arbitrary characterization of nnecrteinty, including chanes
congtrainte fie, fixed probabilities of discrete valueal,

Sampling Technigues in Stochastic Modeling. Onee probahil-
ity distributions are assipned to the uncertain parametors,
the next step is to perform a sampling operation from the
domain of multivariable uneertam parameters. One of the
mast widely used techniques for sampling from a probability
digtribution is the Monte Carla sampling, which ia hased on a
pecizdnrAndom generator to approximate a uniform dietriba-
tion (is, having equal prebability in Cthe vrange from 9 o 1) The
specifie values for each input variseble ere sclected by inveran
transfirmation over the comulative probahbility distribution,
Monte Carle sampling alse has the important property that
the surcessive pointz in the sample ere independent. The main
advantage of the Mante Carle methods lies in the fact that the
rognlts from any Mante Carle simuolation ern be froated by
classical siatiatical methods. Thua, resulla can be presented in
the form of histogrars, and methods of atatistical estimation
and inforenes are applicabie. Nevertholesa, in moat zppliea-
tiona, the actual relationship between suecessive points in a
sample has no physical signilicanece. Henee the randomnesal
independence for approximating a uniform distribution is not
critical, In such cases, uniformity properting plays 8 oon-
tral role in spmpling. As a result, congtrained or stratified
gampling techniques are more appesline. Latin hypercube
sampling fa one form of stratifiad sampling which yiclds maore
precise astimates of the distribution function, Tn Latin hyper-
ctube sampling, the range of each uncertsin parameter X; is
subdivided into nonoverlapping intervais of equal probability.
One value from each interval iz selected at random with
mreapect: tn the probahility distribution in the interval, The »
values thus eblained for X ave paired randomly (e, in equally
likaly enmbinationa) with # values of X5 These » values are
then combined with i values of Xq to form s-triplets, and so on,
until # &-tuplets are formed. The main drawhaek of this atrati-
(ication acheme i that it is uniform in one dimension and does
not pravide uniformity properties in A-dimensiona. Purther,
for Latin hypereube spmpling fand its variant, median-Liatin
hypercube rampling), sample sacenarios ere random, but not
completely independent. Recently, an efficient sampling tech-
nigque {Hammersley sarmence sampling) basad on Hammersley
points has hean developed, which ueges an optimal degign
gehermne for placing the # pamnis on a k-dimensional hypercube.
This scheme ensures that the sample set iz more represen-
tative of the population, showing uniformity properties in
multidimengiones, vnlike Mante Carlo, Tatdn hypercube, and
18 variant, the medisn-Latin hyperenbe sampling techniquoes.
The uniformity properties of different sampling techoiques
are illustrated in Figure 1] for o sample size of 100,
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Figure 11, Unifortnity of different sampling technigues.

Sample Size Selection in Stochastic Modeling. The gample
size on which the sampling is performed is critical, as it de-
fines the accuracy or procision of the probability space in
mnltidimensional problems, Tt is possible, however, to measure
the precision of an estimate of the cumulative distribution
function in terms of the conflidence interval. The confidence
interval for ¥, the pth fractile, ia given by (o, yel. where y; I8
the lower end point and y;, is the upper end point of the intar-
val. The intervals 7 and & are eatimated by

i=np—oynpll —m (14)
atel
A=npt cu"np[l - {15}

where n is the sample size and e is the deviation enclosing prob-
ohility & of the unit normal distribution. The suificiency of the
nurmber of samples n can be judged from the values of the con-
fideoee inlerval precigion,

The implication of choosing a suitabla =ample size ia cru-
eial in stochastie experimenta, Althongh, ssme applications
demand = Inrge sampla size, the number ja asually baaed on
practical eonsiderations, puch as the computational cost of the
run and the ohjective of the run. Because stechaatie sirmulation
involves o Tecursive loop, 8 compromise i= csually desired
between the cost of the simulation runs and the precision in
eulimating the autput probability functions in certain cases.

(C'lassical statistics] methods predict the sample size ro-
quirement for a piven coufidence interval for only Monta
carlo gampling and overpredict the sample size requiroment
for other sampling techniques (33). Recently, a methodology

hased on fractzl dimensions has been propesed to predict
the sample size requirerent for non-Monte Carlo methodz
by characterizing the interval width for a given confidence
level {aceurncy} {34). This has major implications in stochastic
modaling experiments, because it can be used to predict the
sample gize requirements for innovative, uniform sampiing
methods, auch &5 Hammersley scquence sampling,

Sensitivity Analysis. Onee the input sample Rets have passed
through tho flawsheet and all the sample rung are comnplated,
the stochastic block i uged to quantify the sensitivity of an out-
ptit to each input parameter. Two cosely related bul different:
measuras are presented. These are the partinl correlation co-
efficients and standardized regression coellieiants. From the
sampling data, it is possible to construct an approamate re-
gresgion model which relates an output parameter y; to the in-
put prramelera X’

¥i=Bo + 3 Bix; (16
i

Tha canstants & are ordinary regression eonfficients which are

easily influenced by unita of measurement. This problem is cir-

curmvented if the ragrossion model is written ueing the trans-

formed variables x* and 3" given by

oo ) 17
Ty
and
oy~
¥ o {18}
and & regraggion model in the standandized form:
(1m

y =205
i

whare the & and the o refer to the mean and the standard de-
vigtion, respectively.

Tha coefficients in this model ere called standardized re-
greasion encfficients, and they provide a direct measure ol the
relative importance of the input variables. The accnracy of thia
madel is judged by the value of B2, the cncfficient of determd-

nalion, given by
R - )

B ZI {yi - .I“’Jr::I2

whera %; i3 the calenlated value of ¥ vsing the regression
model,

The partial correlative coefficiants provides a measure of
the linear velatinnship between the output sad input variables.
When nanlinear relationships are invelved, the standardized
correlation eoefficionts and partial regrassion coefTicienta are
caleulated an the basis of ranks rather than the absslute valna.

The importance of probabilistie madeling for ehemical pro-
cosses is ifinstrated by rovisiting the example of integrated
pasification and combined eyele (IGCC) systams for power gen-
eration. The objective of this example is Lo show the role of
ancertaintics in predisting the thermal, sconnmie, and envi-
ronmental performance of a procesa.

Examipla 1 Modeling Unceriainties in Advanced Power Gen-
eration Technolagies. IGCC systems essentially consista of the
following steps: conversion of cont to a fusl gas by reactinn
with gteam and oxygen in a pressurized reducing atmosphare;
eleanup of the fuel gas to remave particulates, sulfur com-
pounds, and olther contaminants; combngtion of the fuel gas

R {20)
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Fipure 12, The Kellngg—Rust—~Westinghouse (KRW) IGCC spatem,

in a gas turbina eombinad-cycla system. TGOC systems are
capahle of higher thermal efficiency and have lower gaseous,
liguid, and enlid diachargea than econventional plverized
coal-fired power plants. However, only a few IGOC syatem con-
cepts have been commercizlly demonstrated. For many other
IGCC enneepts thet are in enrly stages of development, there
are unesriainties regarding process performance, emissiona,
and eost, that may not be reaslved until a commercial-seale
domonstration plant is built. Thheerfainties ave particularly
important for many advanced concepis feaduring high tem-
peratore, “hot” (e, S40°C) dry (Bel, sas-cleanup technology,
Hot-pan clesmop offers the potentially key advantages of
higher plant. thermat efficiencies and lower coats.

A promiging hot-gag gleannp configuration is an aie-blown
Eellogg-Ruoal-Westinghouas (KRW) IGCT syatem. A achematic
of this techmalogy i shown in Figura 12, The hot-gas claanuap
gystem fomturcs in-hed desulfurization in the fluidized hed
gagifier with limestone or dolomite, subaseguenl aulfur removal
from the fuel gas with a zine ferrite sorbent, and high affi-
gieney eyelones and eeramie filters for particalate removal.
Tha aff-gag from the zing ferrite reactor, containing sulfur
compounds, is recyeled to the gasifier. The cliaracterization
of performance nneertaintles focnsed on five major proceszs
arcaz: parification, salfation, gine ferrite desulfurization, ger
turhine, and aelective catalytic reduetion (SCER) section for NO,
removal. Uneertainties in additionsl cost model paramelers
are characterized, incloding direct and indirect capital coats,
operating and maintenance eosts, financial assumptions, and
umit costs of consumables, bypraducts, and wastes. A detailed
description of the extensive list of unrertainties is in (31, and

ia oot elahorated here, for brevity. For the purposa of illue-
tration, however, tha unrartainties in the gagification section
are predented in Table 3. The results for this probabiliste
anzlysis bazed on a 730 MW plant using [lincis MNo. 8 cogl arc
presented in Table 4. A few of these results are discussed in
more detail in the following seetion,

Unecertaimty in Performance and Cost The uneertainty in
the piant thermal efficiency covers a 80% probability canpge
nf leas than 2 pereentage printa, and tha mean, median, and
the deterministie values coineide approximately. As far 8% en-
vironmental performance is concerned, this syatem, which
is equipped with SCR for NO, control, has lower NO, emvis-
ginms than a iypical epal-fired power plant. From Table 4,
the median N, emiggion rate is lower than the determin-
iatie estimate. This is explained by the negative skewncss
of the vneertaintiaz in hoth the formation rate of emmaonia
n the gasifiar and in the conversion rate of fuel-hound ni-
trogen {ammonia) fo NO, in the zas turbine eombustor. In
Figure 13, the uncertainty in total capitel eost is compared
tn the deterministic estimate. Thero f= approximetely o 50%
chance of a eest overrun associated with the determiniatic es-
timate of $§1535%W. The 30% probability range for eapital coat
iz 5240/kW, or appromimately + $120/W from the nominal
estimata, which is a relatively narrow range of capital eost un-
certainty compared to other technology options, In apite of
the agresment bebween the deterministic and probabilistic re-
sults for capital cost, the two analysas do not agree on the cost
of electricity, a= seen in Figure 14. There is more than a 7%
probahility that the coat will be higher than the determinis-
tic estimate. This example depicts the primary advantage of
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Table 3. Uncertain Parameters and Disiribuiions in Gasifiention Sectlon of IGCC Process BExample

Diakribution and Pammeters

Additional
Dcaeription and Unita Det., Value” Typo Lowar Boond Upper Bound Parametort
Gagifiar pressure, bar .24
Goeifior temperatore, K 131t Triang. 1800 1550 (1900}
Cvorall carbon ecrversion, wbt % nas Triang. 0.90 ne7 (95)
(e molar catin N.4a Triang. 0.45 n47 (0,453
HzOt0; malar tatin 0.45
Bulfut capture, mrle of inlet sulfur &0 Triang. BG a5 {80)
Ca/B molar ratia 2.8 Triang. 2.0 24 (2.6}
Ammonia yield, frackion of coal 0.19 Triang, 0.008 010 (.10

nitrogen

T Tket, value = detaroinistic ar nomipal (beat guess) walue,

* Additional parameters are required [or some dietributione. In the caze of the triangiinr distrihotlen, the additiomal paThmataT ia

the made o the ek valne,

Table 4. Results for Probabifistio Simnlntion of KRW-IGCC System?

Deter, Ranpa
Parameter! Unites Value® Median, fog Mean, g 5td Dev, m fo.om=ra.on
Plant perfartance
Thermeail Efficiency %, HHV 40.8 41.0 4n.4 0.5 29.9-4L7
Coal eanammnption ke/kWh n.2av 0336 n.2a%7 0.0041 0.330-N.14R
Frovens warter oonn. el Wh 0.349 0.343 0344 0.0068 0.337-0.060
Dlant dischargen
80 armissivnn kg 18" kecal 0.023 0.025 0.025 .00 & 0.023-0.023
N0, emissiong kgt 109 Yeeal 267 0.187 0.IB7 .50 (1.104-10.266
CO cmissions kgWh 00023 00023 00023 n.0014 0.0022-0.0041
COy emisalong ha'kWh 0.781 0776 0.71 0.0095 4,77 =080
Heolid waste EglWh 4.104 0.104 4.104 0,005+ 0.068-0.112
Plant Caosta
Taotal eapital cost LW 1533 1,330 1,RE7 ™ 1,408 -1,651
Fixed oparating costs BTy 51.4 4.3 E4.4 4.0 46.7-68.0
Variahle sper. eoats mill==Wh 8.8 208 208 .4 16.9-22.0
Conl mitlakWh 153 152 I3 2 15.0-16.6
Othar millafkWh 4.7 85 0.6 LY £ 7-6.6
Cost of alestriefly millwkWh BG4 58.2 bE.2 a1 Bd.G— 1.5

" Natetion titles in herding are defined aa fallaws: f; — ath fractile {fasn = median), ¢ = meen; end = standard deviatlon af the prolability distribution. The
range enclosed by fijas ta g i8 110 A0% probability tonge. All coets ere Jan. 1939 dallars.

& Coal eonsumption is of A0 As-received bests, Water consumption ia far process regitemants ielding makeup for steam cycle bfowdomen, gnsifier steam, zine
ferrite aterm, nod SCE Salid waate Inehyles gasifior bottom osh and nomrecycled fines from fuel gne eyalnmes,

¢ HHY = higheat Tientlng vahao,

® Diptarministic value based on & determiniatic simulation in widsh sedion e todal walues of uicertoin variables are seawmed na "hest Ereas” inprats to tho medel.

probahilistic simulation, allowing the simuifoncouns ineorpora-
tion of uneertaintiess in multiple model inputs, over traditional
sensitivity analysis. The resulting interactions pmong vncer-
tainvariables result in nneertainties in the measures of procesa
viahility. Researeh can provide additiona] informeation ahout
the uncertain input varisbles, leading to changes in their
nneertainly distributions (sach z= the mean or standard
fdevigtion), and therefore, in the overall unesrtaintes of the
technalogy. Thos, it is possible @0 reduce the uncertaintiss of
key variables that contribute most to the rigk of technolopy
failure. Tha methods Based on probabilistic analysis are there-
fore nacersary {or chemieal design involving environmental
control options, so that sny uncertainties associated with
the eontral techmologics are rosolved through ressarch and
development. in the earlier etages of the project.

SYNTHESIS UNDER UNCERTAINTY

The concepl of design under uncertainty has received con-
giderable attention in the pest decads, Now its relevence to
environmental eonsiderations for process design and devel-
npment, however, is truly significant, becausze of the large
number of emerging control atrategics that are promiging
technologieally, but lack commereinl performance data. Most
of the earlior approaches were baged on mathemaiieal pro-
gramming technigoes well suiled for an equalion-oriented
environment, The development of the first probabilistbc
modeling capability arouad the public version of the AS-
PEN process simulator resulted in a fmmdation to model
a pracess probabilisteally uping deterministic, sequential
mrdular gimulatora (39%). Becauss process syntliesis in the
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presenca of nneertainties in the process, lechinical, or esonomie
parameiers muoat incorporate a probabilistic modeling capabil-
ity, it is now possthla to synthesize chemieal processes waing
uncertain estimates of procesa, economic, and environmental
[aetors,

The problems related to design undor uncertainty essen-
tially fall into two categorics: (1) stochastic optimization, and
{2} stochastic programming. A detailed treatise is beyond the
aeope of this artitle and can be abtained elzewhers (35). From
a coneeptual design standpoint, gymthesis under uneartainty is
a atnehaatic optimization problem, where decisiona made now
guide and inflitence praject planning and developments in the
future.

Mathematical Formulation of Stachastic Optimfzation

To underatand the esaential concepts involved in atochastic op-
timization, it ia neerseary to consider the differences Lbetwsen
the deterministic and atochastic optimization scenarios. The
goal of a deterministic oplimization problem is to determine
the sel of digerete decision variables () end continunna deci-
sion variables (x) that aptimizne aome appect of the detarminis-
tic model represented by the chjective fonction (£, subject to
the equality constraints (A) and the inequality constraints (g}
{Fig. 15a). ¥athematicatly, thi=zis representad a5

{ptimize Z = 20x,5)
Y
subfect to Rix,y] ~ a

glx. vl =5h

A peneralized form of the stochastic optimization problem,
where the decigion variables and uwneertain parameters are
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separable is as ollows:
Optimize £ = Pyiz(x, y. 5l

L
gubject to Po{fhix, voull = al = &

Blfgix,y,uf =M = 2,

whare 1z 15 the vectar of snicertain parameters and Py, Prand Py
reprasent any probabilistic funelion siech ag the mean, variancs
or 2 fractile. If Py represents the expected valun or moan of any
funetion, then it is poaaible to estimate the probabiality function
P hased on results in claasieal statistics. For an expected waloe
minfmization of a funetion Z, with a cumulative probability
distribution p, formulation C enn he restated as;
1

Optimize f Zdp
a

anbject to Fallhlx, v, ol = &) = By

Pyllgiz, el = 81 = G

Far a rendom sample size N, m, oblained by sampling from the
dizstribation, the sample mesan is an unbiased estimator for the
actual mean and is piven by

Yz

EZ) = N
Fam pr

(21}
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I} is apparant from the above formulations that, unlike a de-
terminiatic optimization problem, the stochastic oplimization
problem nmst operate on some probabilistie fonetion of the
objective functinn and the ennatr=ints (Fig. 15b). In stochastic
optimization, thersfore, the atochestic medeler performa
the sampling operation (ie, assigns velues Lo the uncertain
parameters baged on their probability distribution by selecting
samples based on the sampling schemes mentioned in the
provious seetion}, combines them together to form & sampla
set, and finally passes the sample values of each of the un-
certmin parameters to the model. The modal is run with the
nzsigned values of tho uncertain parameters for each sample
set to determine the ohjective function and the constraints,
This recursive operation is performed for each set of samples
until all the N, samples sets are analyzed by the modal.
Finally, when all the samgple aats arc through the cvele, the
stochnatic modeler analyzea all the output ohjective funection
and ennstrainta and detarmines the probabilistie function for
the objectivo function and constraints, which ja passed on to
the aptimizer. The optimizer, in turn, predicts new deciaion
variables. Because, at each optimizational iterative sfape,
one needs to run the stochastic modal with s large number of
samples ta caleulate the probabilistic funetions, the computa-
tiongl intansity in stechastic optimization is large.

Recently, an algorithm has been developed for judictonsly
chonsing the sample size =o that the computetional intensity
iz minimized (36). This algorithrm, called stochastic annealing,
is a variant of simulated annoaling where the sample size
selected for each optimizational iteration s predieted by
the optimization routine, in addition to the get of decision
variables (Fig. 18). Stochastic annenling achieves compu-
tational offfciency without any significant loss of sclution
accuracy. The framework hased on stochastic annealing
affords a capability for process synthesia in the presence
of uncertainties in tochmical and economic paramelers for
large-seale problems. The general procedure for performing
synthesis of large-seale processes wilh uncevininties, using
a coupled atnchaatic amnealing and oonlinear programming
approach, s illstrated by revisiting the problem of the enwvi-
ronmental restoration of the hazardens waste site, agauming
that thern are nncerlainties in the waste composition and the
glasa physical property modals. The presence of uneertainlicg

Optimal Synthesizer
design or " Input
optimizer
Proh. ohjective Decision
function and variahles and
constrainta $aImiple size

sampling Uneertain
block ) parametars
Model

Figure 16. The stochastic annealing framewark for syn-
thesis under nneorteinty thai manipulates the sample size
automatically.

coupled with the eombinatorics of the problem rendera the
synthesia task intractable by ather methods, The methodelogy
hased on the coupled stochastic annealing and nonlinear pro-
grammiing determines the optimal waste hlend eonfiguration
in eotnputationally afferdable tima.

Example D: Environmental Restoration of the Hazardous Waste
Sife: Effect of Uncertainties. The role of uncertainties in the
synthesia of procedsses involving environmental eonsiderations
is illustrated by revisiting the waste blend problem described
previously. Recent findings ahow thet uncertainties exiat in
some of the inpnt assumptions which may affeet the optimal
blend configuration, The foilewing sectiona describe how the
uncartainties ace inporporated in the madel formulation.

Characterization of Lincertainties. The sources of uncertainty
in the waste blending problem are caused by (I} uncertaintics
fn the waste compnsition and (2] uncertainties in the physi-
cal property models, The wastes in the tanks were formed as
by-products in different processes used to produen radicactive
materials, Cansequently, a certain degree of variability is A=
sociatad with ench of these tanks. Any exporimental sample of
the waote drawn from the tank is not representative of the fank
as a whole, which contributes significantly to the uneertainty
geancinted with the waste eomposition. Based on the mean and
the ralative standard deviation for each component in the tank,
nortmal probability distributions ean he developed for the indi-
vidual mass fractions, For o particular tank, the range of un-
corteinty in the mass fractiona of the compongnts is shown in
Talle 5, The sormal distributions are sampled to dovelop Moo,
waste composition input sels (mass fractiona). The number of
samples Nom, 1s predicted by the stochastic annealing algo-
rithm, which manipulates the saample sizc sclection process de-
pending on whether the enrrant process configuration is closer
to nr farther away {rom tho optimum. Given the aat of masa
fractions corresponding bo Neg, samples and normalized fo
1.0, these component mass fractions are then usad in the mo-
del rana.

fIn the other hand, the uneertainty in a predicted property
value for a given glass composition is devised on the basia of
empirical eorrelations. This uneertainty factor ia then ineer-
porated into the gines property constraints, se that the fea-
gihle region for the applicability of the glags property models is
narrowed, Thia results in a value of the minimum gquantity of
frif required higher than when the uncertainties related to the
glass property models are neglected.

The presence of uncertainties increazss the compuotational
intensity of this problem becauss, as mentioned previeusly,
the mathematical formulation for this stochaatic pptimization
problem invelves a recursive sampling loop. Further, the
highly noncenvex nature of the constraints and the large
eombinatorial aize of the dizcrete blending problem require in-
novative combinatorial optimization technigques to determine
the optimal blend configuration.

The problem of determining the optimal blend eonfigura-
tion with uncertainties in the wasbe composition and in the
physical properly models is posed as & stochastic optimization
prablem. The stochastic optimization problem requires that the
wagte composition for a particular waste source (tank) must be
reprasented in terms of expected values, Thuos, equations 11—
13 are repregented as

L. = E{w"] + [f7]
[G]e = 2 [

i=1

(22}
23}



whara the subscript "™ rignifis= that the guantities are bazed

POLLUTION PREVENTIOMN DESIGH ITHY
Fahln 5. Uncertainties in Waste Compasition of Tank at Hazordons Waste Sita
Companenta Maza Fractiona Maga, kpgs RADw Tineertainty
AlgOy 0.02002 2i166.1 0.15 25185141 = 3 » 0.15)
Haly 4000856 1075.9 0.13 1075.0¢1 = A % 0.13)
Cal 00701283 1419E.3 0.07 14318531 £ 3 = 0.07)
Faglly 0220344 BAB235.2 0.04 283285201 + 3 X 0.04)
Li0
MpD 0.(H02687 a7 g 0.4 3377.641 = 3 x 0.04)
Magl) 1080435 1011117 004 10111171 = 8 % 0.04)
5ily 0.1756263 220004 0.04 220305401 £ A x 004
Zrly; 0000041 514 0.12 BL4(1 + 3 x 0.12)
Cther oxides® D.4B005G G02429.9 0054 B03428.971 = 3 = .06/
Cry0y n.014986 188374 0.03 18847.4(1 = 3 = 0.03)
I
POy 0.248023 2128960 0.04 21289541 =1 x 0.04)
505
Maoble mmetals
# Relative stamedard devintion (S0 i deflined as the mativ of the standord deviptinn to the mean.
& Collective tarm e tace quantfties of oxides oot explicitly cheracterized.
and [24] Optimat | simulated | MPUL
[Fe™], = [(’—'lg (243 configuration / annealing \ parametars
AT e

on the expected value and Efw™] signifies the expeeted value
of the waste mass of the ith component inthe waste. Similarly,
the individual component bounds, erystallinity consiraints,
solubilily constrainta, and the glass property constraints are
alse baged on the expected values,

The solution procedure adopted for this wasta blending
problem is hesed an A coupled, stochastie annealing-ponlinear
programming glgorithm, illustrated in Figure 17, It ineorpo-
rates a saquence of three loops nested within ono annther. The
inner loop correaponds to the sarapling loop, which gencrates
the srmples for the mass fractiony of the different compo-
nents of the waste, evaluates the mean of the wasle mass
for each tank, whicl: ia then propagsted through the model
that determines the property consiraints. The loap above the
gampling loop contmals the NLP optimizational acheme. The
outer loop in the seqnance consista of the stochastic annealing
{8TA} algarithm which predicts the sampla size for the recr-
give sampling loop and generates the blend configuration so
that. the total amount of frit is minimuam ovar all the blenda:

STA formulotion: g n
. Lip
Miny Y[
=1i=1

where [/, ia the mass of tha ith component in the fril baged
on the expected values for the waate composition and the un-
cortaintiss in the physical property models for the jth waste
blend, and 2 dennotea the number of components, The WLE prob-
lem ia solved on the basis of the expected value of the obfective
function at each configuration pradicted by the stechastic on-
noaling algnrithm. Hence, the NLP preblem formulation is as
[ollmera:
NLP formulation: "

s 43
Min E (File

i=T

subject to equalily constraints (egs. 22— 24}, individunl compo-
nent bounda, erystallinity eonstraintes, solubility constraints,
and glasg property constrainta.

The optimal design econfiguration was identified by the
conpled STA-NLP approach using both Latin hyperctube and

Discrete decision varigbles
{zp, blend configuration}

Feasible
solution

MLP
optimizer

N
/\

Comtinuous
decision variables
{eg, mass of each
compnent in it

Objective functlon (total frit mass}
and
eonstralnts {gfass propariy related)

4

L ncertain
parameters

AN

Sampling
biock

Figure 17, Coupled stochastic annealing and nonlinear proe-
gramming algorithm for discrete-continuous optimization of
proceseas with unoertaintiss.

Hammersley sampling sequences. The minimum quandity of
the fril required in bath cases 1= 11,307 Kga. This atudy clearly
indicates how uncertainties affect the optimal solutien and
the need for incorparating them in the development of realistic
maxdels for anvironmontally friendly proceases.

FUTURE THRECTIONS

The methods deseribed in this artielr represzent a consolidated
offort tn illustrate several facets of a design problem having
environmental implicntions. The eomplex nature of the envi-
ronmental eontrol problem indicatos, however, that much atill
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remaing to be done to achiova the goals set forth by regulators.
Hence, the following paragraphs are pointers to new method-
ologiesfanplytical schemes related to process aynthesiafdesipn
of proceases involying covironmental constraints. Three key is-
sues thal are gaining importanca and affect the design of anvi-
ranmentally friendly pricesees ara discessed.

Life-Cycle Analysis. Lifecyele analyais {LCA) fs an anvi-
ronmental auditing tonl that quantifies the envirnnmental
burdens of any procesa setivity by considering all interrelaterd
systemns. It has the potential of idenlilying and quantifying the
envirnnmental performence of a proceas o a product from the
“cradln to tho grave.” In the past, the methodology of life-eyele
analyaig wap applied to process design, but its capability of ac-
counting for mass and energy flows in A syetom has rendared
it invaluahle in proceas design. Racently, a life-cycla analysia
framework was used to perform an environmental and eco-
nomic analysia of a nitrie acid plant (37). The LCA approach
provided a comperisen of the environmental performance of
the degign altarnatives, relating the ecomamic performenca fo
the mass and energy {lows in the process. A lifeeycle analy-
siz approach sptimizes both the environmental and economie
performanee and thus is a powerful decision making tool for
designing clean process technologies,

tultiohjective Optimization. The task of proeess design
while keaping environmental ohjectives in view fs truly a mul-
tiohjeetive optimizational problem. Easentially, the job of the
process epginesr I8 (0 maximize the eeonomie performance by
minimizging the emissiona. Methods to address such types of
problems (3R,38) aro potential tools for addressing the enwvi-
ronments] control problem.

Envirnnmental Impact Assessment. The reduction of the envi-
ronmental impact of processes has recently drawn attention to
finding the best way to reduce the impaet of chemical planta. In
this procedure, the waste gonerptinn problems are ranked by
waste minimization eriteria dealing with technology changes,
process revamps, and recyeling of waste materials. Quanii-
tative goidelines have heen propozed to addreas the environ-
mental impact. of procoss technologies (40,410, A methodology
for enviranmental impact minimization combining life-cycle
analyais and process optimization is a suitable approach if the
various metricy {air and water pollution, solid waste, global
warming And nzone depletion) are properly considersd in
process design and development (42).

SUMMARY

The key issucs and coocepts that must be considered during
proeesd development to aatiefy cnvironmental eriteria have
been presented. The dipcussion has been based primarily on
o process synthesis approach, becavse it reprasents an im-
portant tonl for devaloping cleaner, envirenmentally friendly
procezaes, The capahility of cxisting process aimulation tonls
and their inhereni delficiency in performing this task has
been elucidated. The effect of recent advances relatod to
ophimizational technigques and their viability in determining
cnvironmantal =olutions has been deseribad, The role of unear-
tainty and its importence in process design and development is
alao aignificani. From a B&ID standpeint, o combingd process
gyathesia, emvirmnmental fmpact or rigk Assepgment, and

life-cycie analytical taol can be truly beneficial for the general
process design problem with environmental implieations. As
we welcome the twenty-first century, the advancement in
computer architsetire will enable the develapment of sophisti-
enated modeling tools, and the power of the Internet will provide
eagy data pequisition, se that the envirenmental impact of
processes is characterized with ceartainty.
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