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Abstract
Air pollution exposure assessment involves monitoring of pollutant species concentrations in the atmosphere along with 
their health impact assessment on the population. Often air pollutants are monitored via stationary monitoring stations. Due 
to the cost of sensors and land for the installation of the sensors within an urban area as well as maintenance of a monitoring 
network, sensors can only be installed at a limited number of locations. The sparse spatial coverage of immobile monitors can 
lead to errors in estimating the actual exposure of pollutants. One approach to address these limitations is dynamic sensing, 
a new monitoring technique that adjusts the locations of portable sensors in real time to measure the dynamic changes in air 
quality. The key challenge in dynamic sensing is to develop algorithms to identify the optimal sensor locations in real time in 
the face of inherent uncertainties in emissions estimates and the fate and transport of air pollutants. In this paper, we present 
an algorithmic framework to address the challenge of sensor placement in real time, given those uncertainties. Uncertainty in 
the system includes location and amount of pollutants as well as meteorology leading to a stochastic optimization problem. 
We use the novel better optimization of nonlinear uncertain systems (BONUS) algorithm to solve these problems. Fisher 
information (FI) is used as the objective of the optimization. We demonstrate the capability of our novel algorithm using 
a case study in Atlanta, Georgia. Our real-time sensor placement algorithm allows, for the first time, determination of the 
optimal location of sensors under the spatial–temporal variability of pollutants, which cannot be accomplished by a station-
ary monitoring station. We present the dynamic locations of sensors for observing concentrations of pollutants as well as 
for observing the impacts of these pollutants on populations.
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Introduction

The term “health risk” is defined by the qualitative and 
quantitative evaluation of health damage, disease, or 
death resulting from the actual or potential presence and/
or exposure to specific pollutants. The main goal of risk 
analysis is to define the level of hazard posed to both indi-
vidual human health and the health of the whole popula-
tion in the selected area. Exposure assessment is an impor-
tant step in health impact assessment, which depends upon 
the monitoring of pollutant species in the atmosphere. 
Exposure-based model for optimal sensor placement algo-
rithms has been developed for water network systems by 
different researchers. Berry et al. (2005) considered water 
demand throughout the day with a fixed set of patterns 
without considering uncertainty and used a deterministic 
optimization method. Shastri and Diwekar (2006) have 
applied demand uncertainty and solved the problem using 
stochastic optimization. Both Berry et al. (2005) and Shas-
tri and Diwekar (2006) have the objective of minimizing 
the fraction of the population exposed to contamination 
on the affected nodes. Mukherjee et al. (2017) considered 
demand as well as contamination location uncertainty for 
sensor placement for health impact reduction not only in 
the sensor node but also in subsequent downstream nodes.

Compared to the water network system, there are very 
few algorithms available for spatiotemporal air quality 
monitoring. In this work, we present a novel exposure-
based model for optimal sensor placement in air pollution 
monitoring. Currently, air pollutant species are monitored 
via stationary monitoring stations with sparse coverage 
due to a limited number of sensors because of the high 
capital cost of installation, especially within an urban 
metropolitan area. Lack of coverage can lead to errors in 
the estimate of actual exposure to individuals. With the 
advancement of drone technologies, it is possible to meas-
ure the dynamic changes in air and water quality monitor-
ing with unmanned aerial systems (UAS) (Tmuši’c et al. 
2020). UAS have been extensively used for agriculture, 
vegetation, soil moisture, and river monitoring, as shown 
in Manfreda et al. (2018). Diwekar and Mukherjee (2017) 
have developed an algorithm for water quality monitoring 
with portable sensors that change positions in real time. 
Pattern recognition techniques have been used by Jácome 
et al. (2018) for optimal sensor placement in water qual-
ity monitoring. They have used cluster analysis to capture 
the temporal variation of pollutants. However, there are 
few works on the use of UAS for air quality monitoring. 
This type of dynamic sensing requires novel algorithms 
that decide sensor locations in real time in the face of 
inherent uncertainties in the fate and transport of the pol-
lutants. Sun et al. (2019), in their paper, has developed 

optimal sensor placement in the Gaussian spatial field for 
environmental monitoring using hourly air quality moni-
toring data from a particular year provided by Hong Kong 
Environment Protection Department (EPD). They did not 
track the source of pollutants or, in that sense, the fate and 
transport of pollutants. Efficient sensor placement for spa-
tiotemporal sensor placement has been shown by Nguyen 
et al. (2018). The effectiveness of their proposed algorithm 
is demonstrated only in a small spatial environment like 
the scale of a university building. In this work, we have 
developed an algorithmic framework to solve the problem 
of sensor placement in real time for air quality monitor-
ing through tracking the fate and transport of pollutants 
generated from automobiles in highways considering the 
uncertainty of the system and demonstrate this capability 
for a case study in Atlanta, Georgia.

Air quality monitoring is essential for assessing the health 
impact of air pollutants. This is a complex problem, espe-
cially in the case of urban areas due to inhomogeneities in 
pollutant concentrations resulting from a multitude of emis-
sions sources. One of the primary sources of pollutions is 
process industries. With the increased environmental regu-
lations, emissions monitoring and management are critical 
to the process industry. An emerging area of data analytics 
and the industrial Internet of things (IIoT) for remote moni-
toring has been shown in Milward et al. (2019). Advanced 
applications using big data analytics are becoming popular 
among industrial sectors (Graessley et al. 2019). Information 
distribution using IIoT and big data analytics allows process 
industries to analyze data in real time and act promptly on 
failures. With a combination of UAS-based emission moni-
toring with process monitoring technologies, the process 
industry can utilize emission data along with their process 
data to reduce emissions for potential gain in adding value 
to the business (Vochozka et al. 2019). Similarly, cities can 
use dynamic sensing to provide timely advisories for the 
population.

The amount and the distribution of pollutants depend on 
the number of sources and the meteorology of the region. 
While the number and emissions intensity of sources deter-
mine the volume of the pollutants, it is the ground and upper 
layer airflow, temperature, humidity, sunlight, etc., that 
determine the fate and transport of the pollutant. The result-
ing concentrations of pollutants change spatially and tempo-
rally because of these physical and chemical processes. Due 
to the dynamic nature of the pollutant concentrations, static 
monitors are unable to detect the actual population exposure 
and are therefore unable to assess the actual impact of pol-
lutants. The algorithm for optimal sensor placement should 
be robust enough that can dynamically locate sensors in real 
time to monitor the dynamic nature of air pollutants as well 
as consider the uncertainties associated with the system. 
This paper addresses the problem of minimizing the cost of 
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air pollution monitoring for evaluating health impact in the 
face of uncertainties.

The algorithm for dynamic sensor placement requires a 
time-series data of the distribution of pollutants in the region 
of interest for testing. Since traffic is the primary source of 
pollution in the urban area, we have considered pollutants 
from automobiles and their distribution for our case study. 
The objective is to determine the optimal locations of the 
sensors such that when combined with a comprehensive sys-
tem model, the variability of the unmeasured variables can 
be minimized, thus maximizing observability by sensors. In 
the present problem, we are measuring pollutant concentra-
tions based on the number of cars at strategic locations and 
dynamically placing a network of sensors so that the con-
centration of pollutants can be monitored. We can measure 
the observability of the sensor networks in terms of Fisher 
information (FI), which is a probabilistic function (Lee and 
Diwekar 2012). The spatiotemporal sensor positions in real 
time are solved as an optimization problem, solved for each 
time period. In this optimization problem, we have maxi-
mized the observability through maximizing FI subject to 
the fate and transport models of the pollutants under the 
weather as well as traffic uncertainty.

Problem definition

As discussed earlier, emissions of pollutants from mobile 
sources like automobiles are uncertain in both time and 
space. Along with the location and time of emissions, the 
wind speed and other meteorological factors responsible 
for the fate and transport of pollutants are also uncertain. 
Optimal sensor placement in the present literature has not 
considered the inherent uncertainties in emissions and mete-
orological variables. The motivation behind this paper is to 
carry out stochastic optimization for real-time spatiotem-
poral sensor placement in the face of the uncertainties. A 
stochastic modeling capability of the AERMOD simulator 
developed in-house is implemented to capture the uncer-
tainties in these variables and study their effects. AER-
MOD simulation software is originally developed by the 
United States Environmental Protection Agency (US EPA) 
(Fox 2017). This stochastic capability of AERMOD allows 
incorporating the uncertainty in source emissions as well as 
meteorological factors to predict distributions of pollutants. 
Along with the spatiotemporal distribution of the pollut-
ants, we need to assess the population exposure in order to 
identify the optimal location of the sensors.

In this work, we have used a novel algorithmic framework 
based on the better optimization of nonlinear uncertain sys-
tems (BONUS) algorithm proposed by Sahin and Diwekar 
(2004) and the stochastic simulation capable modified ver-
sion of AERMOD simulation software (Fox 2017) is used 

to maximize the observability of the pollutants, in terms 
of both the spatiotemporal distribution and the population 
exposure in terms of intake in the face of uncertainties. 
To model the distribution of pollutants, we have used an 
advanced version of AREMOD developed at Vishwamitra 
Research Institute (VRI) that incorporates stochastic inputs 
in terms of both sources and meteorological data includ-
ing wind speed and temperature, all of which are associated 
uncertainty.

Application region and data collection

For the application of our algorithm, we have chosen an 
urban area with automobiles as the source of pollutants. The 
primary reason for this is the dynamics of the pollutants 
from automobiles, which has diurnal variations. The city 
of Atlanta has centers to count the number of automobiles 
at the prime location of the city, as can be found from the 
Georgia Department of Transportation’s Traffic Analysis and 
Data Application (TADA) (2020). For our study, we have 
chosen the latitude and longitude of Atlanta (33.74 N and 
84.38 W, respectively) as the center of the city. For con-
venience, we have considered the region between 33.64 N 
to 33.84 N in latitude and 84.28 W to 84.48 W in longitude 
as the region of interest. This area is shown in Fig. 1. It gives 
0.2 degrees or 13.8 miles in latitude or y-axis and 11.5 miles 
in the longitude or x-axis.

In order to estimate the dispersion of pollutants, ten dif-
ferent automobile monitoring locations, as shown in Fig. 2, 
are used as the source of a pollutant for our study. The mete-
orological data for the city of Atlanta are obtained from the 
Georgia Environmental Protection Division (EPD 2020). 
The distribution of pollutants thus obtained is used to calcu-
late the population exposure by considering the intake of the 
population of the region. Fisher information (FI) is estimated 
from both the concentration of pollutants and their intake. 
We have used the BONUS algorithm framework to optimize 
these decision variables, including the uncertainties to get 
our highest FI objective. In this work, we used data from 8 
am to 5 pm (10 h). Thus, the diurnal changes are included 
in the problem. To our knowledge, there is no study on the 
dynamics of hourly spatial distribution of pollutants caused 
primarily by automobiles from the primary highways on the 
city of Atlanta, Georgia. Brantley et al. (2019) characterized 
spatial air pollution near the railyard area in Atlanta, Geor-
gia. They have considered the emission primarily occurring 
within railyards that can affect nearby air quality. Mulhol-
land et al. (1998), in their work, have assessed the temporal 
and spatial distribution of ozone in the Atlanta metropolitan 
area during the summer of 1993, 1994, and 1995. Thus, our 
present algorithm is unique that will give the flexibility to 
perform real-time spatiotemporal monitoring of pollutants 
and dynamic sensor placement.
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Uncertainties in pollutant distribution system

At any given time (h) of the day, the mean number of vehi-
cles is given in Fig. 3. On different days, the number of vehi-
cles is assumed to vary with a normal distribution around the 

Fig. 1   Region of interest in 
Atlanta

Fig. 2   Pollutant source location in Atlanta. Ten different locations (as 
numbered) are chosen: Map© Thunderforest

Fig. 3   Flow diagram to find optimal sensor location with optimizing 
FI
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mean. The 3� of the distribution is assumed to be ±5% of the 
mean. There are uncertainties associated with meteorologi-
cal data as well. Meteorological data are also assumed to 
vary at different days with 3� of the distribution assumed to 
be ±5% of the mean. From the distribution, 100 samples are 
generated. The stochastic version of AERMOD developed 
in-house is used to estimate the pollutant concentrations at 
different spatial locations for each sample point. The average 
pollutant concentration is generated using the average from 
100 samples. The process is repeated for each hour.

Although uncertainty is inherent in pollution fate and 
transport models, it does not receive much attention in the 
literature. Monitoring urban air pollution is a challenging 
task. Recently, Moltchanov et al. (2015) studied the feasibil-
ity of measuring urban air pollution by wireless, distributed 
sensor networks. Air pollution monitoring using a sensor 
grid environment is shown by Ma et al. (2008). They have 
provided an optimal node organization to obtain homogene-
ous sensor data. Grid-based monitoring of air pollution data 
has also been performed by Richards et al. (2006). Mobile 
and wireless sensor networks and real-time monitoring tech-
nology of air pollution are relatively recent. Marjovi et al. 
(2015) have generated air pollution maps using mobile sen-
sor networks. The significance of real-time monitoring using 
wireless sensor networks is shown by Kadri et al. (2013). 
Recently, Kaivonen and Nagi (2020) showed the same by 
using sensors on city buses. Mihăiţă et al. (2019) have shown 
the effectiveness of combined stationary and smart mobile 
pollution monitoring for air quality evaluation using data-
driven modeling. Reis et al. (2015) have shown integrating 
modeling and smart sensors for human exposure monitor-
ing. However, none of these papers address the problem of 
optimization for real-time spatiotemporal sensor placement 
in the face of weather and source uncertainties. This is the 
focus of the current endeavor.

Problem formulation

In the sensor placement problem, the objective is to deter-
mine the optimal locations for a network of sensors such that 
when combined with a comprehensive system model, the 
variability of the unmeasured variables can be minimized, 
thus maximizing observability (Diwekar 2008). We can 
measure observability in terms of Fisher information, FI of 
pollutant concentrations as a probabilistic function. We can 
also measure observability in terms of Fisher information of 
the variable population exposure. These are both probabilis-
tic functions. As the problem involves probabilistic objective 
function and uncertainties, the problem can be classified as 
a stochastic optimization problem.

Since we are determining spatiotemporal positions of the 
sensors, this is also a real-time optimization solved for each 

time period. The number of sensors is linked to the perfor-
mance and error characteristics of sensors, and further, vir-
tual sensing (model-based) has its own error characteristic. 
In the absence of a hardware sensor, this characteristic is 
used along with fate and transport models (virtual sensing). 
If no cost data are available, then we can limit the maximum 
number of sensors. Here, we assumed a maximum number 
of sensors and converted this problem into a stochastic non-
linear programming problem using x and y coordinates of 
the sensor positions. The following stochastic optimization 
problem is solved for different numbers of sensors at differ-
ent hours of the day.

and
AERMOD models with exposure assessment models.
Weather and model uncertainties.
where n is the number of sensors, FIi ( i = 1,2,… , n ) is 

the FI for process variable, nmax is the maximum number 
of sensors allowed, and B is the total sensor budget. By 
determining the spatiotemporal placement of sensors over-
all measurable process variables by using objectives like FI 
and cost as metrics for optimization, the overall number of 
sensors can be reduced, thereby producing an effective and 
efficient spatial–temporal sensor network.

Objective function for the problem

Different pollutants that need to be considered for assess-
ment (from automobiles) include NH3, NOx, SOx, volatile 
organic compounds (VOCs), and carbon graphite as particu-
late matter (PM). The human exposure assessment requires 
two steps for converting the pollutant concentration into 
human exposure Baratto et al. (2005). These are:

•	 data collection and analysis;
•	 exposure assessment;

Data collection is to gather site-specific data, which 
include site characteristics to identify potential pollutant 
pathways and exposure points as well as other data needs for 
modeling purposes. The site-specific data depend on the land 
use category. In the present problem, we have considered the 
Atlanta City region to model the fate and transport of the 
pollutants. The exposure assessment is performed based on 
the amount of toxicant on the population. The concentration 
of a toxicant and the population at any particular site is used 
to calculate net exposure (Ex) at the given site. It is given as:

(1)max
xi,yi

n∑

i=1

FIi(xi, yi)

(2)
Subject to: n ≤ nmax

Distance between sensors ≤ dmin
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where the net exposure is Ex (mg/m3), C is the average con-
centration contacted over the exposure period (mg/m3), and  
P is the population.

We are considering Fisher information as the measure 
of observability of sensors. The calculation of Fisher infor-
mation from the concentration, as well as exposure data, is 
given below:

For a given random variable X , the probability distribu-
tion, which depends on an unknown parameter �x , is given 
by the continuous likelihood function (f X,�x (X|�x) . In order to 
estimate the unknown parameter �x , it is essential to capture 
the observability of �x , i.e., variability of the observations. 
Fisher information (FI) is a measure of observability that can 
be used to indicate the accuracy of the uncertainty estima-
tion. Through FI, we can capture the amount of information 
that the set of observations contains about the parameter 
�x . Unlike Shannon information, which is a global measure 
of the occurrence of �x , FI can be used as a local metric of 
observability.

FI is defined as: Given a random variable X and its asso-
ciated density function (f X,�x (X|�x) which depends on the 
parameter vector � ∈ Θ ., and �x is the xth component of � , 
the Fisher information associated with �x is Rico-Ramirez 
et al. (2010):

Due to the gradient operator �

��x

 , FI measures the amount 
of change in the likelihood function due to a change in the 
unknown parameter value �x . Lower FI indicates that 
fX,�x (X|�x) changes slower with respect to a change in �x , 
which corresponds to lower observability in regards to esti-
mating the true parameter value and vice versa.

In this problem, we have a single measured variable 
which is the concentration of pollution (x) in the given region 
that changes with time due to uncertainties in the volumes 
of automobiles at different time as well as with meteorol-
ogy. (In case of Fisher information for exposure, this vari-
able is replaced by Ex given in Eq. 3.) The parameter to be 
estimated is the mean value of pollutant (a) . The probability 
density function fX,a(X|a) with respect to the true value of 
the variable is given as follows:

The calculation of FI requires the determination of its 
probability density function (PDF). To have a continuous 
distribution for which derivative can be estimated, we use 
Kernel density estimation to generate the PDF information. 

(3)Ex = C × P

(4)FI
�x
= ∫

1

(fX,�x(X|�x)

(
�(fX,�x(X|�x)

��x

)2

dX.

(5)FIa = ∫
1

(fX,a(X|a)

(
�(fX,a(X|a)

da

)2

dX.

(For details, please refer to Diwekar and David (2015).) FI 
captures the changes in distribution and can provide a good 
measure for the observability of a variable.

The BONUS algorithm for stochastic optimization

In the presence of uncertainties, an optimization problem is 
converted into stochastic optimization. The objective func-
tion is probabilistic in nature. Sometimes, the constraints 
can also be probabilistic as well. A generalized stochastic 
optimization problem can be represented as follows:

where P represents the cumulative distribution functional 
such as the expected value, mode, variance or fractiles and 
u is the uncertain variables expressed in terms of probability 
distributions. In our problem, we use the expected value of 
the objective function. Depending on the type of optimiza-
tion, stochastic optimization problems can be further classi-
fied as stochastic linear programming, stochastic nonlinear 
programming, and stochastic mixed integer linear and non-
linear programming problems. Our problem is a stochastic 
nonlinear programming problem as the system is nonlinear, 
and decision variables are continuous scalar variables.

There are two fundamental approaches used to solve sto-
chastic nonlinear programming (SNLP) problems. The first 
set of techniques identifies problem-specific structures and 
transforms the problem into a deterministic nonlinear pro-
gramming (NLP) problem. For instance, chance-constrained 
programming (Charnes and Cooper 1959) replaces the con-
straints that include uncertainty with the appropriate prob-
abilities expressed in terms of moments. The major restric-
tions in applying the chance-constrained formulation include 
the following: The uncertainty distributions should be stable 
distribution functions, the uncertain variables should appear 
in the linear terms in the chance constraint, and the prob-
lem needs to satisfy the general convexity conditions. The 
advantage of the method is that one can apply the deter-
ministic optimization techniques to solve the problem. 
Decomposition techniques like L-shaped decomposition 
(Birge and Louveaux 1997) divide the problem into stages 
and generate bounds on the objective function by changing 
decision variables and solving subproblems that determine 
the recourse action with respect to the uncertain variables. 
However, these methods also require convexity conditions 
and/or dual-block angular structures and are only applica-
ble to discrete probability distributions. Examples of this 
include the Lagrangian-based approaches like the regular-
ized decomposition technique (Ruszczyński 1986) and the 

(6)Optimize P1(Z(x, u))

(7)
subject to P2(h(x, u)) = 0

P3(g(x, u) ≥ 0)
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progressive hedging algorithm (Rockafellar and Wets 1991) 
used for SNLP problems. These methods have limitations 
in terms of handling uncertain variables as the number of 
scenarios considered tend to be small.

An alternative approach that can be used to capture uncer-
tainty is through a sampling loop that is embedded within 
the optimization iterations for the decision variables, as 
shown in Fig. 4.

Figure 4 represents the general calculation sequence for 
any stochastic optimization problem (Diwekar and David 
2015). From Fig. 4, the inner loop finds a probabilistic repre-
sentation of the objective function and constraints using the 
sampling loop or scenario loop. The outer optimization loop 
determines the decision variables. For these decision vari-
ables at each iteration, a sample set or scenario set of uncer-
tain variables is generated, and the model is run for each of 
these sample (scenario) points. The value of the probabilistic 
objective function and constraints is calculated. For nonlin-
ear programming problems, the derivative information is 
also needed, which is again calculated by perturbation of 
each decision variable using the sampling loop or scenario 
loop for each perturbation. This is a computationally expen-
sive procedure making these methods ineffective for even 
moderately complex models.

Better optimization of nonlinear uncertain systems 
(BONUS) algorithm was proposed by Sahin and Diwekar 
(2004) to circumvent this problem. In BONUS, the inner 
sampling loop with sample model runs (Fig. 4) is only used 
for the first iteration. In this first iteration, the decision vari-
ables are assumed to have uniform distributions (between 
upper and lower bounds). Specified probability distributions 
of uncertain variables together with uniform distribution of 
decision variables form the base distributions for analysis. 
The solution space of the objective function and constraints 

is obtained by sampling only at the base distribution at the 
beginning of the analysis. As the optimization proceeds, 
the decision variables change, and the underlying distribu-
tions for the objective function and constraints transform. A 
reweighing scheme is used based on the ratios of the prob-
abilities for the current, and the base distributions to find the 
values of objective function and constraints. A schematic 
diagram of the reweighting scheme is shown in Fig. 5. To 
have a smooth function for the probabilities, we approxi-
mate the distributions using kernel density estimation tech-
niques. For details about the BONUS algorithm, please refer 
to Diwekar and David (2015).

In this problem, we have used the Hammersley sequence 
sampling (HSS) of the Fisher information (FI) for the initial 
base distributions. HSS is an efficient sampling technique 
developed by Diwekar and co-workers (Diwekar and Kalag-
nanam, 1997). HSS has been used for various applications in 
order to improve the efficiency of simulations (Diwekar and 
Ulas 2007). It uses Hammersley points to uniformly sample 
a unit hypercube and invert these points over the cumulative 
probability distribution to provide the sample set for the var-
iable. This enables the sampling to be uniformly distributed 
in n-dimensions that are not achievable by pseudo-random 
sampling, as shown by Mukherjee and Diwekar (2016) in 
the optimal spatial configuration of a polymer solution. 
The algorithm we have developed is essentially a sequen-
tial quadratic programming (SQP) algorithm that uses the 
reweighting scheme to estimate objective function and gradi-
ent at each iteration instead of the sampling loop. The Hes-
sian is approximated by using the Broyden–Fletcher–Gold-
farb–Shanno (BFGS) formula.

The general procedure involves the following two steps. 
Since we need expected value for objective function and 
constraint for this problem, the procedure is described in 
terms of expected value calculations.

1.	 Off-line Computations (Generating base distributions 
and objective function data from AERMOD): Draw 
independently distributed samples j = 1, Nsamp for 
uncertain variables u and decision variables x (FI in the 
present problem). The distributions for the decision vari-
ables are assumed to be uniform distributions between 
upper and lower bounds of the decision variables. Use 
these samples to generate the design prior density func-
tion Pp(x, u) using kernel density estimation (KDE). 
Evaluate the objective function Z (and the probabilistic 
constraint) for each sample.

2.	 Online Computations (Using BONUS reweighting 
scheme to solve the sensor placement problem shown 
in Eqs. 6 and 7).

(a)	 At each iteration k, the decision variables xk (in 
the first iteration, the initial value of decision vari-

Fig. 4   Percentage of eyes with SRF resolved versus persistent among 
different visits for the whole sample



2098	 R. Mukherjee et al.

1 3

ables is given) define a narrow normal distribution 
around this point (Fig. 5) and draw samples of xk 
from it. Use samples to generate the design distri-
bution Pd(x, u) using KDE. Estimate the objective 
function and constraint (expected value E) using 
the following the reweighting formula:

where 

and satisfy 

(b)	 Perturb the decision variable xk and use the 
reweighting scheme to estimate V(xk + δ xk) . Find 
the gradient and KKT conditions. If KKT condi-
tions are satisfied, terminate, go to step 2,c.

(c)	 SQP computation: Use gradient to compute the 
Hessian approximation Hk using BFGS formula 
and compute step Δx for decision variables by 
solving the quadratic program (QP):

(8)V(xk) = E((x, u)) =

Nsamp∑

j=1

�
k
j
Z(xk, u)

(9)�
k
j
=

Pd(xk
j
, u)∕Pp(xk

j
, u)

∑Nsamp

jj=1
Pd(xk

jj
, u)∕Pp(xk

jj
, u)

(10)
Nsamp∑

j=1

�
k
j
= 1.

(11)min
Δx

∇V(Xk)TΔx + ΔxTHk
⋅ Δx

Cut the step if necessary to obtain a new iterate 
xk+1 = xk + �Δx with � ∈ (0,1).

(d)	 Go to step 2.a.

The solution space consists of multiple local optima. This 
can be observed as we change the initial values of the deci-
sion variables (x, y coordinates of sensors). To cover the 
space uniformly, we have used Latin hypercube Hammersley 
sampling to generate the initial values. The best solution is 
picked by the one with the highest FI. Figure 6 provides the 
program structure.

The steps for the solution of the spatiotemporal sensor 
placement problem are shown in Fig. 7.

Results and discussion

In the present work, our goal is to understand the distribu-
tion of pollutants as well as their exposure to the human 
population in the city of Atlanta. The time-series distribu-
tion of pollutants for diurnal fluctuation of the number of 
automobiles, wind speed, and temperature are presented in 
this work. The mean number of vehicles at each counting 
station at a different time, as used in the present work, is 
shown in Fig. 3.

SO2 and carbon graphite, as particulate matter 2.5 (PM), 
are considered for our analysis. The source of pollution is 
considered as a point source. The release of pollutants per 
location is considered to be 1.00E−03 g/s and 2.20E−04 g/s 

(12)s.t.Xk + Δx

Fig. 5   BONUS reweighting approach (Lee and Diwekar 2012)
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per vehicle for SO2 and PM, respectively. The exhaust is 
assumed to be at the height of 1 m from the ground. The 
exit temperature is assumed to be 425 K. The velocity of 
the exhaust is assumed to be 1 m/s, and the diameter of the 
exhaust is assumed to be 0.1 m. Urban effects and the urban 
area are applied to each source. Since a gross assumption 
is made for the source of pollution, our goal is to find the 
impact of airflow (both surface and upper layer) on the aver-
age distribution of pollutants over the city of Atlanta. It is 
to be mentioned that the topography of Atlanta has not been 
included in the AERMOD model. However, the contribu-
tion of the paper is to provide an efficient way of finding 
real-time sensor placement for a city, and the problem uses 
sufficient information to provide the required output.

To find the distribution of pollutants within the region, 
the region of interest in the city of Atlanta is divided into 
grids as shown in Fig. 8. Figure 8 also shows the dis-
tribution of the population in different neighborhoods of 
Atlanta. Ten different location are identified as sources of 
pollutants, as shown in Fig. 2. The pollutants are moni-
tored for 10 h, starting from 8 am to 5 pm. Along with 
diurnal variation, there is a variation on different days of 
the year. Pollution source, wind speed, and temperature 
uncertainty will vary with mean µ and standard deviation 
σ (spread µ ± 3σ). It is assumed to vary ± 5% of the mean. 
Simulation is performed with two different methods:

(A)	 Maximizing FI as obtained from pollution distribution
(B)	 Maximizing FI as obtained from exposure of pollutant 

on human population

The exposure assessment for each node is obtained 
using the average concentration of the population at the 
neighborhood where the node is located. Exposures are 
calculated from the amount of chemical at the exchange 
boundary (e.g., skin, lungs, gut) and available for absorp-
tion to the human body. It is given as:

Exi : net exposure at node i(g/m3), Ci : average concentration 
contacted over the exposure period at node i (g/m3), and Pi : 
the population at the nodei . Figure 9 shows the distribution 
of FI at different times from the concentration of PM, and 
Fig. 10 shows the FI from exposure from the distribution 
of PM.

(13)Exi = Ci × Pi

Fig. 6   Calculation sequence 
for optimal sensor placement 
with the AERMOD model and 
BONUS algorithm

Fig. 7   Flow diagram to find optimal sensor location with optimizing 
FI
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Fig. 8   Population distribution 
in different neighborhoods of 
Atlanta: Map © Cedar Lake 
Ventures, Inc.

Fig. 9   Distribution of FI at different times from the concentration of PM. The x and y coordinates represent the distance from the center of the 
city as shown in Figure 1, and the color represents the intensity of FI
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In BONUS, the first step is to generate our base sample 
set. We have identified 12 uncertain variables: wind speed, 
temperature, and the number of automobiles at the ten loca-
tions. Hundred samples of these 12 variables are gener-
ated using HSS. Decision variables are assigned a normal 
distribution with their upper and lower bounds specified. 
The mean value of the output information from AERMOD 
at each time is used to estimate the FI, which defines the 
objective function. BONUS is then used to find the optimal 
solution of sensors for all 10 h. It has been found that the 
stochastic nonlinear problems are non-convex. The solu-
tion space consists of multiple local optima. This can be 
observed as we change the initial values of the decision vari-
ables (x, y coordinates of sensors). To avoid getting trapped 
in local solutions, we provided ten different initial values 
for the algorithm. These different initial values needed dif-
ferent iterations to get to the optimum. Figure 11 presents 
multiple solutions using ten different initial values of deci-
sion variables.

To cover the space uniformly, we are using Latin hyper-
cube Hammersley sampling to generate the initial values. 
Table 1 presents the multiple solutions as obtained from 
different initial values, also shown in Fig. 12. The objective 

function here is FI based on exposure for a particular day in 
Atlanta at 8 AM. We can see from Fig. 11 that the best solu-
tion is solution 7 with the highest FI. The sensor positions for 
this solution are shown in Fig. 12. We had given a constraint 
that the sensors should be at least 10 km apart. Since this 
is an NLP problem, we used Karush–Kuhn–Tucker (KKT) 
error (optimality criteria) for stopping criteria (Diwekar 
2008). The tolerance for KKT error is set to 1.00E−03% of 
the objective function value.

Fig. 10   Distribution of FI at different times from the exposure of PM. The x and y coordinates represent the distance from the center of the city 
as shown in Figure 1, and the color represents the intensity of FI

Fig. 11   Optimal objective function values for multiple optimization 
runs
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We solved the problem for two sensors located at a mini-
mum distance of 10kms apart for different hours. Figure 13 
shows the FI distribution at different hours of the day. It can 
be seen that the distribution changes significantly due to dif-
ferent traffic conditions throughout the day. The positions of 
the two sensors (marked by yellow stars) are selected based 
on maximum FI without fail for all conditions. Since the 
distributions are different, the sensor positions also change 
accordingly.

Results based on population exposure

Figure 14 shows the FI distribution at different times of 
the day when the pollutant’s exposure to the population is 
accounted for along with the position of the sensor. In this 
case, also, the sensors are optimally placed where the impact 
is maximum. Since the minimum distance between the two 
sensors is specified at 10 kms, it does not put sensors closer 
where the impact can be higher. It can be seen that the sensor 

positions are different as obtained from FI based on concen-
tration. In this case, the impact is higher where concentration 
and population are both high.

It is expected that as we dynamically move the sensor, 
we are able to capture more information. Table 2 shows the 
percentage increase in information by dynamically moving 
the sensor by comparing the information at optimal location 
with that from a static sensor position as at 8 h.

It is also expected that as we increase the number of sen-
sors, we can capture more information. An analysis is per-
formed to see the impact of the increased number of sensors. 
Figure 15 shows the change in optimum objective values as 
we increase the number of sensors from 2 to 10 at 8 a.m.

Conclusions and future work

This is the first-time algorithm developed to carry out real-
time spatiotemporal sensor placement for air pollution mon-
itoring. Also, for the first-time, weather uncertainties are 
included in real-time sensor placement for air pollution mon-
itoring. A real-world case study for the city of Atlanta, Geor-
gia, is presented. Real-time spatiotemporal sensor placement 
problem is solved by stochastic optimization method using 
the BONUS algorithm, considering uncertainty in pollut-
ant sources as well as meteorology. Results from the intake 
formulation (B) (population exposure) are significantly dif-
ferent from that of method A (pollutant concentration alone). 
Comparing methods A and B, we can say that consideration 
of pollution intake of the population affects the choice of 
sensor nodes. When we compare quantitative gain due to 
dynamic sensing as compared to fixed sensors, we found that 
the information increase due to dynamic sensing is 3–134 
times that of static sensors. BONUS reweighting scheme has 
made the present method computationally efficient to solve 
it in real time. Dynamic sensing with portable low-cost sen-
sors is a new area for monitoring, which shows promise for 
exposure assessment. This paper provides a novel theoreti-
cal basis for such an endeavor. BONUS algorithm provided 
optimal solutions to the sensor placement under weather and 
pollutant source uncertainties for the city of Atlanta in a real 
time. Unlike stationary monitoring stations, our real-time 
sensor placement optimization algorithm will allow, for the 
first time, the assessment of spatial–temporal variability of 
pollution.

Recently, US government approved regulations for the 
use of commercial drones. Theories and framework devel-
oped in this work will also be useful for drone-based moni-
toring. Our method is also going to be useful in drone-based 
monitoring of water bodies, water security networks, and 
sensor placement for advanced power systems with similar 
applications to other infrastructure issues like security of 
the power grid, a possibility. This work demonstrated the 

Table 1   Solutions from different initial values for decision variables

Run no. Sensor 1, X Sensor 1, Y Sensor 2, X Sensor 2, Y

1 9.21 −1.80 3.30 6.16
2 8.54 5.02 −3.99 0.73
3 5.45 −8.21 8.80 −1.00
4 3.05 7.96 2.00 −4.86
5 1.96 −6.06 −8.92 8.37
6 −0.21 3.78 5.30 3.04
7 −4.00 −9.60 −6.41 −10.56
8 −4.92 9.67 −7.85 −8.48
9 −8.56 −4.10 9.01 −4.24
10 −11 1.73 −2.13 10.96

Fig. 12   Optimal sensor placement for Atlanta, Georgia, using Fisher 
information (FI) based on particulate matter (PM) concentration, at 
different hours of the day. The x and y coordinates represent the dis-
tance from the center of the city as shown in Fig.  1, and the color 
represents the intensity of FI
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Fig. 13   Optimal sensor placement for Atlanta, Georgia, using Fisher 
information (FI) based on particulate matter (PM) concentration, at 
different hours of the day. The x and y coordinates represent the dis-

tance from the center of the city as shown in Fig.  1, and the color 
represents the intensity of FI

Fig. 14   Optimal sensor placement for Atlanta, Georgia, using Fisher 
information (FI) based on exposure from particulate matter (PM), at 
different hours of the day. The x and y coordinates represent the dis-

tance from the center of the city as shown in Fig.  1, and the color 
represents the intensity of FI
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applicability of the stochastic optimization method using 
the BONUS algorithm for dynamic sensor placement. More 
work is needed to show the robustness of the method by 
simulating the fate and transport of pollutants for a longer 
time period (weeks to months). In addition, one could evalu-
ate the technique for multiple sources of pollutants instead 
of just the automobile sources, as was done for this initial 
demonstration.
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