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a b s t r a c t 

Infertility is an inability of those of reproductive age to become or remain pregnant within five years of 

exposure to pregnancy WHO . Since its inception in 1978, In vitro fertilization (IVF) has become the most 

resorted protocol for treating infertility. This article is focused on the first stage of IVF namely, superovu- 

lation. Superovulation is the drug-induced ovarian stimulation process to facilitate multiple ovulations 

per menstrual cycle. Thus, successful superovulation is the foundation for a successful IVF cycle. Despite 

the existence of general guidelines for dosage prescription, patient customized dosage protocols do not 

exist, and complications, such as overstimulation, do occur. To solve the limitations of the existing em- 

pirical system, a mathematical algorithm is developed to provide a customized model of superovulation 

owing to the size distribution of eggs (follicles/ oocytes) obtained per cycle as a function of the chemi- 

cal interactions of the drugs used and the patient conditions during the cycle, to serve as a baseline for 

forecasting the outcome. A personalized medicine approach was previously presented based on mathe- 

matical modeling and optimal control for the agonist Long Lupron protocol of IVF(Nisal et al., 2020). This 

article is an extension of that work and describes the theory, modeling, and optimal control strategy to 

improve outcomes of IVF treatment for the antagonist Ganirelix (GnRH) protocol used in clinical practice. 

The validation of the procedure is performed using clinical data from the patients previously undergone 

IVF cycles. The data was available for 13 patients and customized patient-specific model parameters were 

obtained from the data. The model was used to predict follicle size distribution for all 13 patients for 

the remaining days of the cycle. It was found that the personalized models showed a strong fit with the 

clinically observed follicle size distribution (FSD). Then, the optimal control method was used for each 

individual patient to predict optimized drug dosage protocols using the customized patient specific pa- 

rameters. The validity of modeling and optimization approach is corroborated by the results and show 

the efficacy of the optimized drug dosage protocols for each patient. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Infertility is a disease affecting around 48 million couples and 

86 million individuals globally ( WHO, 2020 ). Around 2% women 

uffer from primary infertility and 10% women suffer from sec- 

ndary infertility globally based on a survey conducted by the 

orld Health Organization (WHO) using data from 190 countries 

ver a 20 year time period. Primary infertility is the inability to 

onceive a first live birth and secondary infertility is the inabil- 

ty to conceive after a prior live birth. Developing regions and 

ountries across the world and especially some regions of Eastern 

urope, North Africa, the Middle East, Oceania, and Sub-Saharan 
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frica showed higher prevalence of infertility ( Mascarenhas et al., 

012 ). In the United States, the Center for Disease Control (CDC) 

eported that 19% of women had primary infertility and 6.5% from 

econdary infertility while 12.7% of the women used infertility ser- 

ices based on data from the year 2015–2017 ( CDC, 2019 ). 

The in-vitro fertilization process is one of the most frequently 

dopted infertility treatments in Assisted Reproductive Technolo- 

ies (ART) worldwide. More than 5 million babies have been born 

hrough in vitro fertilization techniques ( Adamson et al., 2013 ) and 

n the United States 1.7% of the total infants were born through 

RT in 2015 ( Sunderam et al., 2018 ). In vitro fertilization (IVF) is a

rocess by which egg cells (oocytes) are fertilized by a sperm out- 

ide the body in a laboratory by simulating similar conditions in 

he body. Then, these fertilized eggs (embryos) are implanted back 

n the uterus for a full-term pregnancy. It has four basic stages 

https://doi.org/10.1016/j.compchemeng.2021.107554
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2021.107554&domain=pdf
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Fig. 1. Stages of In vitro Fertilization procedure ( Roberts, 2020 ). 
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 Fritz and Speroff, 2010 ): superovulation, egg retrieval, insemina- 

ion/fertilization and embryo transfer. An illustration of the process 

s shown in Fig. 1 . 

Regardless of the geographical location, IVF remains an expen- 

ive treatment to date with out-of-pocket estimates per cycle cost- 

ng around $10,0 0 0-$15,0 0 0. This expense is variable and may in-

rease with multiple factors such as unsuccessful IVF cycles, mul- 

iple births, low infant birth weight and preterm births owing to 

VF cycles ( Sunderam et al., 2018 ). The high costs of ivf are a result

f the high cost of drugs, fixed costs for infrastructure and testing 

nvolved. Thus the cost of a successful IVF procedure hinges on the 

ost of superovulation. Currently, this step is executed using almost 

aily monitoring of the follicle development using ultrasound and 

lood tests. The daily dosage of hormones is customized for each 

atient based on these tests. Conventionally, doses are prescribed 

y clinicians based on empirical data instead of randomized tri- 

ls and tend to start at 150 or 225 IU. Typically minimum dosages 

rescribed by clinicians start between 150–300 IU for younger pa- 

ients and reach the absolute maximum at 450 IU for patients 

ith poor response ( Jungheim et al., 2015; Rombauts, 2007; Dorn, 

005 ). Devroey and team recorded a high number of retrieved 

ocytes even with an initial low dose FSH (Follicle Stimulating Hor- 

one) (100 IU) on a relatively young age group ( Devroey et al., 

998 ). 

The decision making process behind choosing an FSH dose for 

 patient includes various markers such as age, anamnesis, clini- 

al criteria and ovarian markers such as AFC (Antral Follicle Count) 

nd AMH (Anti-Mullerian Hormone) ( La Marca and Sunkara, 2013 ). 

ecent studies show that utilizing the marker AFC to determine 

he FSH starting dose showed that less than 225IU was required 

or most patients under the age of 35 years ( La Marca et al., 2013 ).

here are general guidelines for the dosage limits albeit, the opti- 

ization of dose for each patient is not attempted. IVF procedure 

ith higher dosages can result in a condition such as the Ovarian 

yper Stimulation Syndrome (OHSS) ( Alper et al., 2009 ), for which 

urative actions are still unidentified. Around 1–2% of women un- 

ergoing IVF suffer from a serious case of OHSS ( Klemetti et al., 

005 ). The prevalence of Polycystic Ovarian Syndrome (PCOS) in 

atients has been shown to increase the incidence of OHSS and 

hese patients are found to be the ones most susceptible to OHSS. 
2 
any patients without PCOS may also develop OHSS after stim- 

lation. Protocols based on factors like age, AMH, AFC, FSH, BMI 

Body Mass Index) levels and smoking history predict optimal pro- 

ocols with the highest follicle yield and reduced occurrence of 

HSS ( Yovich et al., 2016 ). 

Computational approaches have been developed recently to 

redict an IVF cycle’s outcome depending on characteristics like 

atient characteristics, historical ivf cycle data, embryo morphology 

r biomarkers during culture to design a cost-effective customized 

reatment strategy. Post-treatment predictors included number of 

ggs collected, cryopreservation of embryos and embryonic stage 

hen transferred ( Simopoulou et al., 2018 ). Personalized treatment 

or IVF using the mathematical tool of ǣnomogram ǥ predicted the 

varian response and starting FSH dose based on predictors such as 

ge, FSH, AMH and AFC ( Allegra et al., 2017; Di Paola et al., 2018;

a Marca et al., 2013; Moon et al., 2016; Papaleo et al., 2016 ). Vari-

bility in response based on indicators such as- FSH, LH/FSH ratio, 

MH (Anti-Mullerian Hormone), BMI (Body Mass Index), AFC and 

ge establish the complexity and diversity in biological and clinical 

eatures for each patient. The feature diversity in patients increases 

ncertainty towards the estimation of IVF outcomes, thus indicat- 

ng the need for customized patient-specific and cycle-specific pre- 

ictive models ( Simopoulou et al., 2018 ). 

All the existing protocols use patient history, monitoring and 

linical judgement of the physician as the basis for dosage deter- 

ination. The empirical nature of the process can increase the in- 

idence of complications such as overstimulation or unsuccessful 

uperovulation. The extensive infrastructure cost for testing and 

onitoring, along with the cost of medicines, multiply the ex- 

enses for superovulation stage. 

These studies corroborate the need for a personalized IVF treat- 

ent and modules that can provide optimal patient-specific drug 

osage profiles, which can reduce hyper-stimulation, cost of treat- 

ent, improve the oocyte quality and quantity, and thus increase 

he overall success rate of IVF, resulting in successful pregnancies 

nd live-birth. This is the focus of our work. 

There are four commonly used protocols for IVF. The four pro- 

ocols ( Scoccia, 2017 ) are (1) Long Lupron agonist Protocol, (2) Mi- 

roflare agonist protocol, (3) Four stop Lupron agonist Protocol, 

nd (4) Flexible GnRH antagonist (Ganerelix or Cetrorelix) Protocol. 
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reviously a mathematical modeling and computerized algorithmic 

pproach to generate personalized hormonal dosing for augmented 

uperovulation were presented for the Long Lupron agonist proto- 

ol ( Nisal et al., 2020 ). In our recent work, we found that all ago-

ist protocols behave in a manner similar to the Long Lupron Pro- 

ocol as far as the modeling and optimization of the superovulation 

tage is concerned. However, antagonist protocol is different and is 

he focus of current endeavor. The work presented here builds on 

he foundation laid by the previous model. A customized model for 

he antagonist protocol using Ganirelix (GnRH) is presented here. 

tudies have shown that flexible GnRH administration generates 

igher quality mature follicles,significantly improve implantation, 

linical pregnancy, and live birth rates in high responders and im- 

rove outcomes for patients with PCOS while reducing onsets of 

HSS ( Chern et al., 2020; Trenki ́c et al., 2016 ). 

The validation of the procedure is carried out using clinical data 

rom patients who have previously undergone IVF cycles. The fol- 

icle size data of the cycle along with the dosage is used to fit the

atient parameters. These parameters are then used to calculate 

ollicle distribution for each day using the customized model and 

ompared with the actual data. This procedure was conducted for 

3 patients. The results of the customized models are found to be 

losely matching with the observed FSD on the successive days of 

he IVF superovulation cycle. This customized model is then used 

o optimize the dosage for this patient. Using the model and the 

ptimized dosage, the FSD at the end of the cycle was determined 

nd compared with dosage specified by the doctors in these cycles. 

The next section presents the modeling and optimal control 

ethodology, followed by the results and discussions section. 

ection 4 presents the summary and future work. 

. Methodology 

In the earlier work, principles of batch crystallization were used 

o develop a model for superovulation for the agonist protocol of 

VF. The method of moments was used to represent the follicle 

rowth and number prediction model ( Yenkie et al., 2013; Nisal 

t al., 2020 ). This section presents the model briefly below, fol- 

owed by the optimal control strategy. 

.1. mathematical modeling of in vitro fertilization 

Superovulation is the first stage in IVF where the growth of 

ultiple follicles is induced through administration of external 

ormonal injections resulting in follicle growth. The number of 

ollicles activated for growth remains constant for any particular 

atient ( Baird, 1987 ). There are marked similarities between the 

uperovulation stage of IVF and the particulate process of batch 

rystallization( Hill, 2005; Yenkie and Diwekar, 2012 ). The moment 

odel discussed here was developed on the basis that properties 

f a particulate system can be represented by moments of its par- 

icle size distribution, concepts of batch crystallization and resem- 

lance of superovulation to growth of seeded batch crystals ( Hill, 

005; Hu et al., 2005; Nisal et al., 2020; Randolph, 2012 ). 

The moments are calculated using the baseline data for each 

atient and using the general expression in (1). Where μi is the 

 th moment, n j (r, t) is the number of follicles in bin ’j’ of mean 

adius ’r’ at time ’t’, r i 
j 

is the mean radius of jth bin and �r j is the

ange of follicle radii in each bin. 

i = 

∑ 

n j (r, t) r i j �r j (1) 

Before starting Ganirelix: 

 (t) = k 1 �C α1 
f sh (t) (2) 

After starting Ganirelix: 

 (t) = k 2 �C α2 
f sh (t) (3) 
3 
0 = constant (4) 

dμi 

dt 
= i G (t) μi −1 (t) ; (i = 1 , 2 , . . . 6) (5) 

he model for predicting follicle size and distribution utilizes fol- 

icle growth rate and moment equations. It is assumed that the 

ollicle growth rate ( G ) ) is directly dependent on the dose of FSH 

dministered ( �C f sh ) as shown in (2) and (3). Here, k 1 , k 2 and 

1 , α2 are the rate constants and the rate exponents respectively. 

n case of the antagonist protocol, Ganirelix (GnRH) is administered 

n different cycle days depending on initial baseline date for each 

atient. Ganirelix is a gonadotropin releasing hormone antagonist 

GnRH) used to delay premature ovulation and to help egg growth. 

o represent the antagonistic behavior of Ganirelix, the growth 

unction was modified compared to previous study ( Nisal et al., 

020 ). 

Thus, the growth rate before Ganirelix is administered is as 

hown in (2) and the growth after Ganirelix is administered is as 

hown in expression (3). 

For patients who were not administered Ganirelix, the 

rotocol defaulted to the agonist protocol described in 

isal et al. (2020) thus only using the growth function as 

hown in (2). The moment equations for calculating moments 

rom the zeroth moment up to the 6 th order were derived from 

he general expressions in (4) and (5). It can be seen from (5) that 

he (n + 1) th moment is dependent on the n th moment. 

In in vitro fertilization process, the measurements for follicle 

ize and growth are conducted on different cycle days to observe 

ufficient growth. In clinical settings, the follicles are grouped by 

ize in 6 bins ranging from 0-24mm in diameter during a sin- 

le measurement. Thus, six moment values can be obtained per 

ay. The values of patient specific parameters k 1 , k 2 , α1 , α2 were 

btained by mean squared minimization of calculated moments 

ersus the observed moments extracted from experimental FSD. 

he moment values predicted by Eqs. (4) and (5) are converted 

o follicle size distribution (FSD) to validate the output. The fol- 

icle distribution was approximated by using an inversion matrix 

A) combined with non-linear optimization techniques as shown 

n Eq. (6) and (7) ( Flood, 2002; Yenkie et al., 2013 ). 

= An (6) 

 = A 

−1 μ (7) 

Where, n - vector of the number of follicles in all size bins 

or the i th cycle day, μ - moment vector for i th cycle day and A

 inversion matrix of size 6x6. The inversion matrix is shown in 

able 2 (Appendix). 

In the clinical (experimental) settings, the initial dosage for the 

atient is determined by the physician based on various patient 

actors. For the first four days of the cycle, same dose is continued. 

fter the 4 th day, blood testing and ultrasound tests are used to 

etermine dose for each day. The validity of the model was evalu- 

ted by comparing the follicle size distribution as predicted by the 

odel from 5 th day on with that of the experimental data. 

.2. Optimal control 

The optimal control approach evaluates the time-varying val- 

es of control variables which aid in achieving the desired out- 

ome. The optimized variable in an optimal control problem is 

 time varying vector which makes the optimal control approach 

ppropriate for predicting customized dosages over time. Opti- 

al control can be applied to problems in the biomedical field 

nclude- predicting cancer chemotherapy and tumor degradation 
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 Castiglione and Piccoli, 2007; Czakó et al., 2017 ), drug schedul- 

ng in HIV infection treatment ( Khalili and Armaou, 2008 ) and 

lood glucose regulation in insulin-dependent diabetes patients 

 Acikgoz and Diwekar, 2010 ). The maximum principle method for 

ptimal control is applied here which is one of the different meth- 

ds for solving optimal control problems like- calculus of varia- 

ions, dynamic programming, maximum principle, and nonlinear 

rogramming ( Diwekar, 2008 ). The maximum principle method so- 

ution is obtained through solving first order ordinary differential 

quations thus making the process easier as compared to other 

ethods. The control variable is the value of hormonal doses per 

ay of the IVF cycle. The objective of superovulation is to obtain a 

igh number (maximum possible) of uniformly sized (18–22 mm 

iameter) follicles on the last day of FSH administration. 

.2.1. Mathematical formulation 

After initial 4–5 days of treatment with FSH, the follicle size 

nd number plots follow Gaussian/ Normal distribution and this 

rend continues with a shift in mean and variance. Also, the pa- 

ient data shows the normal distribution; thus, it was assumed as 

n apriori distribution for follicles. The normal distribution is used 

o define the objective function in terms of moments. The moment 

odel for FSD prediction, as discussed above, and the method for 

eriving normal distribution parameters are used as the basis for 

eriving expressions for the mean and coefficient of variation. The 

oefficient of variation and mean of the normal distribution ex- 

ressed in terms of moments are derived using the method pre- 

ented by John et al. (2007) . The mean ( ̄x ) and coefficient of vari-

tion (CV) for the normal distribution of follicle size expressed in 

erms of moments are shown in Eq (8) and (9). 

¯
 = 

μ1 

μ0 

(8) 

V = 

√ 

μ2 μ0 

μ2 
1 

− 1 (9) 

he objective of superovulation is to generate uniformly sized fol- 

icles on the last day of the cycle. Thus, the objective of super- 

vulation in mathematical form can be; to minimize the coeffi- 

ient of variation on last day of FSH administration (CV (t f )) where 

he control variable is the dosage of FSH with time ( C f sh ( t) ) . To

ustomize the model for each patient, the parameters are evalu- 

ted using the initial two-day observations of the follicle size and 

ounts along with the FSH administered. The optimal dosage pre- 

iction for the desired superovulation outcome is represented as 

q. (10) . The objective function is subject to the follicle growth 

erm and moment model constraint, equation for the coefficient 

f variation in terms of moments and mean as presented in 

qs. (11) and (12) and the constraint on mean follicle size ( ̄x ) to

ot exceed beyond 22mm diameter. 

in C f sh CV (t f ) (10) 

.t. 

dCV 

dt 
= 

Gμ0 

CV μ1 

[1 − μ2 μ0 

μ2 
1 

] (11) 

d ̄x 

dt 
= G (12) 

.2.2. Maximum principle method 

The optimal control problem presented here has nine state vari- 

bles with nine state equations. In the maximum principle method 

f optimal control, one adjoint variable corresponding to one state 

ariable is introduced resulting in nine adjoint variables with nine 

djoint equations. The i th state variable is denoted as ′ y i ′ and the 

ine state variables are shown in Eq. (13) . The i th adjoint variable
4 
s denoted as ′ z i ′ . Then the objective is converted to the Hamil- 

onian form (H) , which on expansion involves both state and ad- 

oint variables. These expressions are shown in Eq. (14) to (17). 

he optimality condition for this problem and tolerance level for 

he derivative of Hamiltonian with respect to control variable is 

xpressed in Eq. (18) . The expressions presented in this section 

re similar to those presented previously ( Nisal et al., 2020 ) with 

he exception of the growth function as described in the previous 

ubsection. Appropriate growth function is used depending on the 

tart time of Ganrirelix(GnRH). 

 i = [ μ0 , μ1 , μ2 , μ3 , μ4 , μ5 , μ6 , CV, ̄x ] (13) 

ax C f sh (t) 
[ −y 8 (t f )] (14) 

dy i 
dt 

= f (y i , t, C f sh ) (15) 

dz i 
dt 

= 

9 ∑ 

j=1 

z i 
δ f (y i , t, C f sh ) 

δy i 
= f (y i , t, C f sh ) (16) 

 = 

9 ∑ 

j=1 

z i f (y i , t, C f sh ) (17) 

 

dH 

dC f sh 

| = 0 (18) 

his set of equations are solved stepwise. The state equations are 

ntegrated in forward direction from starting time t 0 till the end of 

he cycle t f and the adjoint equations are integrated backward. At 

ach time step it is verified that the optimality condition is satis- 

ed. 

.3. Estrogen modeling 

As the oocytes or follicle growth occurs, estrogen is released. 

hus, increased levels of estrogen, indicate that follicle growth is 

ccurring and is used as a metric by clinicians to observe healthy 

rowth. Thus, the growth of follicles and follicles release estrogen 

hile growing. Since the estrogen growth depends on maturity 

f follicles and is changing with the follicle size distribution, we 

ound that the moment which is related to volume of the follicle 

i.e. third moment, μ3 ), can be correlated to estrogen. This is rep- 

esented mathematically in the model by the expression in (19). 

here, F(t) represents the growth of estrogen and the volume of 

ollicles is represented by the third moment ( μ3 ) . 

 (t) = β1 ∗ μ3 ± β2 (19) 

. Results & discussion 

The models presented above were applied to the 13 patients 

rom the University of Illinois at Chicago IVF center. The data in- 

luded details like prescribed dose profile, follicle measurements 

n different cycle days, patient age, previous infertility, or preg- 

ancy for different women. The initial prescribed dose, follicle 

easurements, cycle time and, Ganirelix start day were the only 

nputs to the model. An example of utilized input data for a Pa- 

ient is presented in Table 1 . 

The mathematical model results fit against available clinical 

ata, parameter estimation, estrogen modeling, and optimal con- 

rol are presented and discussed in this section. 
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Fig. 2. Comparison of Observed (Experimental Follicles) Follicular Distribution with the Follicle Size Distribution Predicted by Customized Model (Model Follicles) for Various 

Days for Patient 8 (a) Day 10 and (b) Day 11. 

Fig. 3. Comparison of Observed (Experimental Follicles) Follicular Distribution with the Follicle Size Distribution Predicted by Customized Model (Model Follicles) for Various 

Days for Patient 12 (a) Day 11 and (b)Day 12. 

Table 1 

Tabular representation of Number of Follicles observed and the pre- 

scribed dosages on different cycle days for a patient. 

Number of Follicles 

Day bins/day 1 5 7 8 9 11 

0-4 6 2 0 0 0 0 

4-8 3 2 0 0 0 0 

8-12 3 8 6 6 5 2 

12-16 0 0 5 5 5 5 

16-20 0 0 1 1 2 3 

20-24 0 0 0 0 0 2 

GnRH Day 6 

C f sh (IU) 337.5 187.5 112.5 112.5 112.5 37.5 

3

d

c

d

s

r

p

F  

i

c  

c

p

i

f

t

l  

G

c

Fig. 4. Histogram of (n mature, M ) / (n mature, E ) for 13 patients on the last day of the 

cycle. 

Fig. 5. Fit for the Patient Parameter α1 versus α2 . 
.0.1. Model validation 

The mathematical model described in previous section uses the 

ata collected on all cycle days to calibrate the model. It is cru- 

ial to examine the performance of the model on various cycle 

ays and observe the fit against experimental data. The follicle 

ize distribution (FSD) for two consecutive cycle days observed in 

eal practice (marked as experimental) and compared to the model 

redictions (marked as model) for patient 8 and 12 are shown in 

igs. 2 and 3 . Fig. 2 .a and b show the comparison of FSD observed

n experimental data to the model predictions for patient 8 on cy- 

le day 10 and 11 respectively. Similarly, Fig. 3 .a and b show the

omparison of FSD observed in experimental data to the model 

redictions for patient 12 on cycle day 11 and 12 respectively. It 

s observed from these results that the model performs very well 

or these patients. 

The results of these two patients are selected as they represent 

wo different start times for Ganirelix. In case of patient 8, Ganire- 

ix was started on day 6 of the cycle, where as for patient 12, the

anirelix was administered on day 8 of the cycle. 

A histogram of the ratio of total mature follicles on the last cy- 

le day predicted by the model (indicated as M) to the total mature 
5 
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Fig. 6. (a) Follicular distribution for Patient 8 predicted by optimal control vs observed follicle distribution from experiments for the last day of the cycle (b) Optimal dosage 

for Patient 8 predicted by optimal control vs experimental dosage prescribed by the clinician. 

Fig. 7. (a) Follicular distribution for Patient 12 predicted by optimal control vs observed follicle distribution from experiments for the last day of the cycle (b) Optimal dosage 

for Patient 12 predicted by optimal control vs experimental dosage prescribed by the clinician. 

Fig. 8. Histogram of (n mature, O ) / (n mature, E ) for 13 patients (a) On the last day of the cycle (b) Shifted histogram for next day after last cycle day. 
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Fig. 9. Histogram of % Reduction in Dosage for 13 patients. 

e

w  
ollicles observed on the last cycle day experimentally (indicated as 

) was created to evaluate the prediction accuracy of the model. As 

een in Fig. 4 , the model predicted follicular outcomes same as ob- 

erved experimentally for 77% of the patients. The model predicted 

etter follicular outcomes compared to experimental data for 15% 

f the patients and marginally worse than experimental data for 

% of the patients. As stated earlier, data were acquired for 13 pa- 

ients from Fertility Center of Illinois, Chicago, IL USA. This data is 

sed to study the predictive capability of the model for the final 

ay of stimulation. 

.1. Results from parameter estimation 

It has been observed previously that the model parameter 

 (follicle growth rate constant) is uniform across all patients 

 Nisal et al., 2020 ). Similar trends were also observed in this study.

he growth rate constant before Ganirelix ( k 1 ) and the growth rate 

onstant after Ganirelix ( k 2 ) were observed to be constant and in- 

ependent of the patient. Thus, the follicle growth rate constants 

ith the Ganirelix protocol have been observed to be patient inde- 

endent. 
6 
Although α1 , α2 (follicle growth rate exponents) change for 

ach patient, it is observed that α2 has a non-linear relationship 

ith α1 of the polynomial of the order two as shown in Fig. 5 .
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Fig. 10. Comparison of Estrogen Observed Experimentally to the 3 rd moment for (a) Patient 8 (b) Patient 12. 
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nly one patient data was observed to be an outlier with values 

f α1 and α2 as -0.77 and -0.85, respectively. This data was re- 

oved from further analysis and the accuracy of the resulting fit 

as found to be 87.11% as shown in Fig. 5 . It can be concluded

hat the model is the best fit for values of both the rate exponents, 

lpha1 and alpha2 ranging from -0.85 to -0.6. It should be noted 

hat the model presented here is identifiable for values of alpha 

etween (-1, 0). 

This current study utilizes data available for all cycle days to 

ake predictions. However, to realize this model in the clinical 

ettings, it is important to utilize initial 2-day data by only tak- 

ng measurements on 1st and 5th cycle day to minimize testing 

nd diagnostic costs. Since,the growth rate constants before and 

fter Ganirelix ( k 1 , k 2 ) have constant values and there exists a non- 

inear relationship between α1 and α2 ; values for α2 can be ob- 

ained when rest of the 3 parameters are known. Thus, the exis- 

ence of a relationship between α1 and α2 is important to con- 

ider the initial 2-day data for patient-specific parameter predic- 

ions and then to use this data to find the optimal dosage profile. 

.2. Optimal control 

The dosage for patients changes throughout the cycle depend- 

ng on the start time of Ganirelix as described previously in 

ection 2 . The maximum principle method for Optimal control is 

pplied to find dosage from 5th day onward. The patient parame- 

ers estimated using the all-day data are used and the maximum 

rinciple method is applied to determine dosage from the start day 

or Ganirelix. The optimal drug dosages for each patient are calcu- 

ated based on the starting dose, cycle days, Ganirelix start day and 

he initial follicle size distribution observed in each patient. Finally, 

he total mature follicles on the final day using optimal control are 

hen compared to the observed mature follicles using the dosage 

pecified. The model is personalized for each patient by consider- 

ng all-day data consisting of follicle measurements and prescribed 

oses from that patient. After that, the optimal control approach 

as applied to calculate the optimal dosage profile for that patient. 

The optimal control results for patients 8 and 12 are shown in 

igs. 6 and 7 respectively. Figs. 6 .a and 7 .a show the mature fol-

icle distribution optimal versus experimental follicle distribution 

or patients 8 and 12 respectively. While Figs. 6 .b and 7 .b show

he optimal dosage versus experimental dosage for patients 8 and 

2. The cumulative dose for patient 8 is found to be 2401 IU com- 

ared to the clinician prescribed dose of 3076 IU. The cumulative 

osage for patient 12 was found to be 2101 IU as opposed to the 

rescribed dosage of 2326 IU. The total number of mature follicles 

or patient 12 was slightly lower with optimal dosage (total 15 fol- 

icles) compared to mature follicles with experimental dosage (16 

ollicles). However, the model prediction shows that waiting for 1 

ay to harvest the follicles will increase the total follicle count to 
7 
8 follicles even with the lower dosage. Thus, asserting the validity 

f these results. 

These results exemplify the notable reduction in dosage from 

he customized model and consequent reduction in the costs to 

he patient. The initial data for 13 patients, along with the results 

rom optimal control for all the patients, is presented in Table 3 at- 

ached in the appendix. 1 patient was excluded from the analysis 

ue to insufficient initial data. The table shows the age of each pa- 

ient, values for parameters- K1, K2, α1 , and α2 , experimentally 

bserved follicles, model predicted optimal follicles on the last cy- 

le day, cumulative dosage prescribed by the clinician, and dosage 

redicted by the model. 

The optimal control profile was calculated and customized for 

ach patient for the clinical data available on 13 patient cycles. A 

istogram of the ratio of final day mature follicles predicted by the 

odel with optimal dosage (n mature, O ) to final day mature follicles 

bserved experimentally (n mature, E ) in real practice is presented 

n Fig. 8 . As shown in Fig. 8 .a, for 85% of the total patients, the

odel predicts better follicle outcomes with optimal dosage com- 

ared to experimental data. Although, the model predictions are 

ot as good for the rest of the 15% of the patients, Fig. 8 .b shows

hat waiting for one day to harvest the follicles, results in all of 

he patients showing better mature follicle outcomes using opti- 

al dosage compared to as observed experimentally. 

The histograms of percentage (%) reduction in dosage for each 

atient are presented in Fig. 9 . 77% of these patients also show 

 significant reduction (20%-60%) in the cumulative dose require- 

ents for successful superovulation while the remaining 23% re- 

uire a marginally higher optimal dosage (> = 20%) than the physi- 

ian prescribed dosage. 

Excessive dosages of fertility medications such as FSH or 

anirelix increase the risk of a potentially life threatening condi- 

ion called the Ovarian Hyperstimulation Syndrome (OHSS) in pa- 

ients. Thus, the incidence of OHSS is highly correlated with the 

igher dosages of FSH and Ganirelix. Although, OHSS is not consid- 

red as a parameter in the objective function for this study, the op- 

imal dosages forecasted by the model are considerably lower than 

he prescribed dosages. Hence it can be concluded that the lower 

ptimal doses comply with minimizing the onset of OHSS. The re- 

ults presented in this section are tabulated in Table 3 (Appendix). 

able 3 shows the patient id, α1 , α2 , experimentally observed ma- 

ure follicles, total mature follicles predicted by the model, optimal 

ollicles predicted by model and prescribed dosage, optimal dosage. 

.3. Estrogen modeling 

The levels of the estrogen hormone show high correlation with 

he follicular volume or 3 rd moment ( μ3 ). Thus, the growth of the 

ollicles should also show the growth of estrogen in patients as de- 

cribed in Section 2 . Fig. 10 .a and b shows the estrogen observed

xperimentally compared to the 3 rd moment for patient 8 and pa- 
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ient 12. It is observed that the estrogen modeling is patient de- 

endent and the values for the constants β1 and β2 change for 

ach patient. The high accuracy ( R 2 ) values of 99% for both pa-

ients show that estrogen is highly correlated with follicle volume. 

hus, it can be concluded that the model can predict estrogen lev- 

ls in all the patients. 

The observed estrogen on each cycle day for every patient along 

ith the calculated third moment is presented in Table 4 . The re- 

ulting patient specific relationship between Estrogen count and 

hird Moment along with respective ( R 2 ) values for each patient 

s also presented in Table 5 . These results also show that the es-

rogen can be used as a metric by clinicians to verify the success 

nd regular progression of the ivf process. 

. Summary and future work 

In vitro fertilization (IVF) has become a ubiquitous and recur- 

ent method in assisted reproductive technology. The first stage 

Superovulation) in ivf consists of drug-induced interventions to 

nable multiple ovulation in a menstrual cycle.Thus, the success 

f the entire IVF cycle hinges on the success of superovulation 

hich is defined by the number and uniformly high quality of 

ggs retrieved in a cycle. The high cost of the IVF process is as- 

ociated with the high cost of drugs and testing required during 

his stage. The progression of follicular development is observed 

aily using ultrasound and blood tests. In clinical practice, these 

ests determine the daily dosage of hormones for each patient. Al- 

hough there are general guidelines for the dosage, the dose is not 

ptimized for each patient. The cost of testing and drugs make 

his stage very expensive. A predictive model based approach was 

resented for customized medicine for an antagonist protocol us- 

ng Ganirelix for IVF to control the monetary and physiological 

xpense limitation of the system. The control strategy uses cus- 

omized models for each patient based on all-day data from each 

atient to define the outcomes. An optimal control approach is 

hen used on these customized models to obtain drug dosage pro- 

les for each patient. The findings show that the procedure pro- 

ides better odds for patients in terms of a higher number of ma- 

ure follicles and reduced dosage. Thus, subsequently reducing the 

esting and associated costs. The process can also reduce the side 

ffects of the drugs significantly. All day data was used in this 

tudy to predict optimal dosage protocols and observe follicle out- 

omes using those doses. However, it is imperative to minimize 

esting and diagnostic procedures to further reduce testing costs 

nd thus necessitating an approach utilizing only 2-day data. In 
Table 3 

Table presenting initial available data and results from 

Initial Data: ID - Patient ID, Exp Fol - Experimentally 

mation: α1 - values for parameter α1 for each patien

Results from Mathematical Model: Model Fol - Follicles

ate model fit Results from Optimal Control: Opt Fol - O

(IU) - Dosage prescribed by clinician Opt Dose (IU)- Op

Patient ID α1 α2 Exp fol Model Fo

1 -0.66 10 10 

2 -0.73 -0.65 13 14 

3 -0.69 -0.69 11 13 

5 -0.77 -0.85 16 17 

7 -0.75 -0.67 10 14 

8 -0.71 -0.67 17 16 

9 -0.64 -0.66 11 10 

10 -0.71 -0.7 48 50 

11 -0.75 -0.68 10 11 

12 -0.88 -0.83 16 17 

13 -0.65 19 15 

14 -0.73 14 13 

15 -0.68 23 28 

8 
he current study, patient specific parameters k 1 , k 2 are constant, 

nd α2 is dependent on α1 . Thus, 2-day data can be utilized with 

he current model. Although, the results for only 13 patients are 

resented in this study, a small clinical trial with 26 patients was 

ubsequently conducted and the results are consistent with those 

resented here. This will be evaluated in the further and this ap- 

roach will be extended to more patient data in the United States. 
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ppendix A 

Tables 2-5 

Table 2 

Inversion Matrix A . 

A 

2 6 10 14 18 22 

2 18 50 98 162 242 

2 54 250 686 1458 2662 

2 162 1250 4802 13122 29282 

2 486 6250 33614 118098 322102 

2 1458 31250 235298 1062882 3543122 
mathematical model and optimal control model. 

Observed Follicles Results from Parameter Esti- 

t α2 - values for parameter α2 for each patient 

 predicted by the mathematical model to evalu- 

ptimal Follicles predicted by model Presc. Dose 

timal Dosage predicted by model. 

l Opt fol Exp Dose (IU) Opt Dose(IU) 

12.01 4800 2512.5 

12.42 3113.5 2476 

12 3263.5 2213.5 

23 946.75 1163.5 

12 2252 2138.5 

15.65 3076 2401 

10.69 5850 3413.5 

50 1188.5 1576 

8.25 3301 2513.5 

14 2326 2101 

18.04 5100 2437.5 

13.33 6375 2775 

24.08 2437.5 3112.5 
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Table 4 

Table presenting available patient data for Estrogen and result 

from mathematical model-Third moment. Initial Data: ID - Patient 

ID, Cycle day, Estrogen. Results from Mathematical Model: Calcu- 

lated Third Moment. 

Patient ID Cycle Day Estrogen (E) Third Moment (M) 

1 1 924 

1 5 724 3402.4 

1 7 1941 5874.2 

1 8 2089 6854.85 

1 9 2766 7946.82 

1 11 4695 12292.2 

2 1 1232 

2 5 467 2201.36 

2 7 746 4890.57 

2 10 2922 14670.03 

2 11 4398 18303.05 

3 1 1618 

3 5 695 3832.51 

3 7 874 6732.82 

3 10 15075.65 

3 11 1343 18754.28 

5 1 1310 

5 5 1975 5994.48 

5 7 4459 17866.12 

5 8 6868 19590.05 

5 9 5084 21422.33 

7 1 31.7 1124 

7 5 404 2774.65 

7 7 474 4503.01 

7 10 1779 14125.63 

7 11 2759 18142.07 

8 1 902 

8 5 466 3866.23 

8 7 1054 8258.16 

8 10 4061 21210.19 

8 11 6056 25972.57 

9 1 24 1174 

9 5 285 4136.29 

9 8 7196.06 

9 11 11611.09 

9 12 2531 13562.81 

10 1 2996 

10 5 1940 12256.98 

10 7 3599 24648.73 

10 10 11193 53364.25 

11 1 64.5 1068 

11 7 294 2386.68 

11 10 997 7403.24 

11 12 2153 16527.16 

12 1 1894 

12 5 217 3084.98 

12 7 416 3861.59 

12 9 914 7381.83 

12 11 2058 17205.63 

12 12 2778 24199.84 

13 1 840 

13 7 582 2829.11 

13 9 1527 9333.64 

13 12 4955 29208.05 

14 1 47 982 

14 5 191 3149.83 

14 7 438 5092.19 

14 9 741 7791.26 

14 10 1419 9563.35 

14 12 2686 17253.17 

15 1 24 264 

15 5 337 3555.25 

15 7 1251 9680.75 

15 10 4792 26322.79 

Table 5 

Table presenting results from Estrogen Modeling Initial Data: ID - Patient ID Re- 

sults from Estrogen Modeling: Relationship between Estrogen(E) and Third Moment 

(denoted as M in Equation), R 2 value of fit. 

Patient ID Relationship between Estrogen(E) and Third Moment(M) R

1 E = 0.3499 ∗M - 76.844 0.9905 

2 E = 0.2496 ∗M - 198.74 0.9562 

3 E = 0.0452 ∗M + 543.42 0.9938 

5 E = 0.2728 ∗M + 1027.9 0.7716 

7 E = 0.1284 ∗M - 78.369 0.9314 

8 E = 0.2656 ∗M - 690.7 0.9956 

9 E = 0.2034 ∗M - 316.19 0.993 

10 E = 0.1917 ∗M + 958.41 0.9995 

11 E = 0.15 ∗M - 119.41 0.9775 

12 E = 0.1295 ∗M - 152.06 0.9933 

13 E = 0.2736 ∗M - 425.23 0.9996 

14 E = 0.1661 ∗M - 271.2 0.968 

15 E = 0.2219 ∗M - 255.11 0.9934 
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