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This work proposes an approach to the modeling and optimization of systems involving a coupled set
of fractional and ordinary differential equations. We first present a generalized version of the predictor-
corrector integration method, which can integrate simultaneously both fractional and ordinary differential
equations. Further, we describe an analytical/numerical dynamic optimization strategy that combines the
generalized optimality conditions for a fractional-ordinary system derived in this work, the generalized
integration technique and the gradient method. The approach is illustrated through a compartmental
model in pharmacokinetics as well as a fractional model for a thermal hydrolysis. In both cases, after we
apply a formal fractionalization strategy, we propose a reformulation of the models to obtain fractional-
ordinary dynamic systems. The systems obtained are further posed within an optimization framework
and solved through our approach as fractional-ordinary optimal control problems. Our results show the
theoretical and numerical consistency of our approach.
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1. Introduction: fractional calculus and operators

Various engineering applications have recently demonstrated
the modeling capabilities of fractional calculus; such concept,
which introduces derivatives and integrals of non-integer or-
der, has been used to represent the behavior of complex
phenomena in several areas, including rheology (viscoelastic
fluids), heat diffusion, interfacial mass transfer, process con-
trol, electrochemistry, classical mechanics, chaos, fractals, im-
munotherapy, epidemiology, sensor development and many other
fields (Lopes et al., 2019; Sarafnia et al, 2018; Sapi et al,
2017; Sopasakis and Sarimveis, 2017; Flores-Tlacuahuac and
Biegler, 2014; Diethelm, 2013; Ding et al., 2012; Almeida and Tor-
res, 2011; Kovacs et al, 2011; Magin, 2010;Tenreiro-Machado et al.,
2010). Compartmental models for drug absorption, distribution and
elimination within the body (pharmacokinetics) have also been
formulated with the aid of fractional calculus (Pereira, 2010). Var-
ious contributions involve applications to the administration of
particular drugs; for instance, amiodarone (Dokoumetzidis et al.,
2010b), diclofenac and bumetanide (Popovic et al., 2010), propofol
(Copot et al., 2013) and doxorubicin (lonescu et al., 2016). Further,
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recent contributions describe the significance of fractional calculus
for modeling biological phenomena in a more general sense, and
show how fractional kinetics are natural solutions to the diffusion
problems in biological tissues (lonescu et al., 2017; lonescu and
Kelly, 2017; Copot et al, 2017a; Copot et al, 2017b; Ionescu et al.,
2015; lonescu et al, 2013; Petras and Magin, 2011;); interesting
phenomena, such as drug tissue trapping and tissue heterogene-
ity, have been addressed in those works. Finally, the work by
Sun et al. (2018) provides an excellent review of real-world appli-
cations of fractional calculus in various engineering fields, which
can motivate further methods and model developments on this
topic.

1.1. Fractional operators

The modeling capabilities of fractional calculus are mostly due
to the non-local property of fractional operators, which can be
used to represent the behavior of state variables showing memory
effects. The literature reports several definitions for the fractional
derivative, including the expressions derived by Riemann-Liouville,
Caputo, Riesz, Riesz-Caputo, Weyl, Grunwald-Letnikov, Hadamard
and Chen (Sales Teodoro et al, 2019); however, the definitions by
Riemann-Liouville and Caputo are the most widely used. The left
Caputo definition for the fractional derivative of function f(x) is
given by Eq. (1), where D is used to represent the fractional op-
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erator, C stands for Caputo, x is the independent variable, « is a
positive real number (order of derivative), n is an integer number
such that n-1<a<n and I' is the Gamma function:

DEFO) = gy | -0 (1)

Observe that memory effects are introduced through a convolu-
tion integral (the derivative at a given point depends on the whole
dynamic behavior of the variable) included in the various defini-
tions. The Caputo differential operator is linear, so that Eq. (2) ap-
plies for any arbitrary constant « and for arbitrary functions f(x)
and g(x), as long as their integrals exist; further, the operator sat-
isfies the commutative property given by Eq. (3) for any arbitrary
constants o and B (Diethelm et al.,, 2005):

D5 (@1 f (%) + a28(x)) = a1gD§ f(X) + gD g (x) (2)

60 (5000 ) = 6Df (5% ) = 6057 f ) 3)

Additionally, the Caputo fractional derivative of a constant, c, is
zero:

i (=0 (4)

Similarly, the left Riemann-Liouville fractional integral defini-
tion is given by Eq. (5):

o f(X) = ﬁ [ Sk -0 f(ode (5)

I indicates the fractional integral operator; notice that the su-
perscript C is not included, since this expression is a Riemann-
Liouville definition. Finally, as expected, fractional integration and
fractional derivative operators are inverse operators (Almeida and
Torres, 2011):

% alx f(X) = f(x) (6)

1.2. Numerical algorithms for the simulation and optimization of
fractional models

Several numerical/theoretical tools have been developed for the
simulation and optimization of dynamic systems of fractional dif-
ferential equations. The most relevant works to our approach are
summarized in this section.

1.2.1. Numerical integration of sets of fractional differential equations

Literature reports several recent efforts to integrate frac-
tional differential equations by numerical methods; among them,
there are some fundamental approaches for particular problems
(Mendes et al, 2019; Moghaddam et al, 2019). As a most gen-
eral case, Garrapa (2018) presents an excellent review of some
of the most efficient existing multi-step methods for integrating
fractional differential equations (FDE), and provides Matlab func-
tions to perform numerical simulations through some of such tech-
niques. The author describes both Product Integration (PI) methods
and Fractional Linear Multi-step Methods (FLMMs). The predictor-
corrector method of Diethelm et al. (2002, 2004, 2005) and
Diethelm (2010) is among the best known PI techniques; on the
other hand, FLMMs are illustrated through various developments
such as the method of Lubich (1986) and the Grunwald-Letnikov
scheme. Besides the numerical strategies, Garrapa (2018) also dis-
cusses the three types of problems involving fractional order op-
erators (Fractional Differential Equations (FDE), Multi-order sys-
tems (MOS) and Linear Multi-Term FDEs) which can be addressed
through multi-step methods.

The algorithm provided by Diethelm et al. (2002, 2004, 2005)
is one of the most widely used methods for integrating FDE and
has been selected as one of the basis of this work. This method

is an extension of the predictor-corrector method of the Adams-
Bashforth-Moulton technique, so that it could be applied to the
fractional case. The algorithm can be applied to the initial value
problem:

SDEy(t) = f(t.y(t))
y©©0) = yk k=01.2...m-1

where the fractional order is ¢ > 0 and m = [«]; notice that only
fractional differential equations are considered; y is the dependent
variable and t is the independent variable. k is related to the order
of the fractional derivative and to the number of initial conditions
for each differential equation. By applying the formula of the rect-
angular quadrature rule, a predictor step is calculated by Eq. (8):

(7)

P = Dol g Soaltone) @
where
biner = (11— ) — (1 - )¥) ©)

and h is the integration time step. Then, by using a trapezoidal
quadrature rule, the corrector step is defined as follows:

a—1
hO{
_ (k) “n+1
Y(tnt1) = ZY t;;; mf(tnﬂsyp(tnﬂ))
th
+ T@+2) Zaj.nnf(tij(tj)) (10)
=0
where
Ajny1 =
nt! — (n—a)(n+1)%, ifj=0
m—j+2)"" + (- ) —2m-j+ D, if1<j<n
1, ifji=n+1
(11)

1.2.2. Optimizing dynamic systems of fractional differential equations:
solution of fractional optimal control problems

When a set of fractional differential equations is posed within
an optimization framework, the result is a fractional optimal con-
trol problem. Various numerical as well as theoretical tools have
been developed for optimizing fractional systems (Wei et al.,
2017). The classical works by Agrawal (2002; 2004; 2007; 2008;
2010) present the derivations for the optimality conditions (Euler-
Lagrange Equations) for such problems, including the variations re-
sulting from the use of different definitions of fractional deriva-
tives. Similar optimality conditions have also been derived by
Guo (2013), Herzallah and Baleanu (2009), Baleanu and Tru-
jillo (2010), Jelicic and Petrovacki (2009) and Jahanshahi and Tor-
res (2017). Further, Atanackovic et al. (2017) considered the case of
complex fractional order derivatives, whereas Caputo and Caputo-
Fabrizio fractional derivatives have also been included in the prob-
lem definition (Almeida, 2017; Nuno and Bastos; 2018). The Euler—
Lagrange equations for a fractional optimal control problem consist
of a two-point boundary value problem involving fractional differ-
ential equations. Such boundary value problem has to be solved
in order to determine the optimal profiles for the control and
state variables. Collocation techniques (Rabiei and Parand, 2019) as
well as a direct solution approach based on the Hamilton-Jacobi-
Bellman (Rackhshan et al., 2018) have been reported as suitable
solution approaches. Among the applications of such fractional op-
timality conditions, the work by Ding et al. (2012) proposes a for-
mulation to represent the interaction between the immune system
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and HIV, and Toledo-Hernandez et al. (2014b) propose a numerical
strategy for the optimization of fractional biological reactive sys-
tems.

2. Modeling and optimization of fractional-ordinary models

We believe that most of the complex dynamic models that
present memory effects in some of their components will also
present a conventional ordinary behavior in any other of their
parts. Therefore, general dynamic systems will most certainly in-
clude a set of differential equations that involves both fractional
as well as ordinary differential equations. Therefore, numerical and
theoretical tools for those combined problems are required. Our
work then intends to present a generalized framework for the sim-
ulation and optimization of dynamic systems including both ordi-
nary and fractional differential equations. When facing those prob-
lems, most of the existing literature proposes a solution approach
based on a numerical inverse Laplace transform algorithm, which
can be applied for linear systems. As an alternative, this paper
presents an approach that does not require such transformation
and obtains the solution in the time domain.

2.1. Our approach

The numerical techniques for fractional differentiation and inte-
grations reduce to the ordinary case when the order used is inte-
ger. Fractional integration techniques can then be used for integer
orders. As a consequence, fractional integration could be used as a
general case and the same technique could therefore be applied for
the integration of both integer and fractional differential equations.
The problem is, however, that the use of a fractional technique for
the integration of an ordinary equation is not practical; the com-
putational effort rapidly increases unnecessarily (a local ordinary
derivative is estimated through a convolution integral of the whole
dynamic behavior of the variable).

Therefore, as a first contribution, we present a generalized ver-
sion of the predictor-corrector integration method, which can inte-
grate simultaneously both fractional and ordinary differential equa-
tion in an efficient manner. Such fractional-ordinary integration
technique is used as a basic tool in the other contributions of this
work. So, it can then be used along to non-linear correlation tech-
niques for the formulation of fractional-ordinary models in which
some of the state variables present memory effects. Also, it can be
used for the simulation of those fractional-ordinary models. Never-
theless, we must emphasize that the contribution of this method
lies only on the decomposition of the equations and on the nu-
merical implementation of the strategy; the conceptual analysis of
this technique and other multi-step methods have already been re-
ported in the literature (Garrapa, 2018).

Further, there are two other main contributions in this work:

(1) In the context of fractional modeling, a common approach
used in compartmental modeling starts with an ordinary model.
Once memory effects are identified, a formal fractionalization
strategy is applied to the ordinary model so that mass balances are
preserved. The strategy results in a system of differential equations
involving both ordinary and fractional operators in each equation
(linear multi-term FDEs). To simulate or optimize such system, an
inverse Laplace transformation technique can be applied for lin-
ear systems (Dokumetzidis et al., 2010b); similarly, a numerical ap-
proximation for the fractional operator can also be given in terms
of the Oustaloup Recursive Approximation (ORA) in the frequency
domain (Tricaud and Chen, 2010) and through the use of artificial
neural networks (Pakdaman et al., 2017). In this work we propose
an alternative approach that uses no transformation.

After the fractionalization approach (equations have both frac-
tional and ordinary differential operators), we introduce artifi-

cial variables and apply the commutative property for successive
fractional derivation so that the multi-linear FDE system can be
converted into a set of fractional-ordinary differential equation
(SFODE; each equation is either fractional or ordinary). Then, the
model can be addressed by our generalized approach for either
simulation (generalized numerical integration) or optimization.

(2) As the main contribution of the work, a theoreti-
cal/numerical strategy for approaching fractional-ordinary optimal
control problems (FOOCP) has also been developed. Such strategy
involves the use of a generalized version of the Euler-Lagrange op-
timality conditions for a fractional-ordinary system. Such condi-
tions are derived and then resolved by a gradient based method
to obtain the optimal profiles for the state and control variables.

Two case studies are used in this work. The first one is a com-
partmental model for drug absorption and distribution within the
body. A second example considers a model for mezcal (an alcoholic
beverage made from agave) production (a thermal hydrolysis). Both
examples have already been simulated and optimized in the liter-
ature by different numerical approaches, so that we can perform a
direct comparison to assess the performance of our approach.

3. Development of theoretical and numerical tools for the
simulation and optimization of fractional-ordinary models

This section describes the main numerical/theoretical contri-
butions of this paper. The work presents a theoretical/numerical
approach to simulate and optimize dynamical systems involving
both fractional and ordinary differential equations. This is a gen-
eral topic that can be applied to most of the engineering areas, in-
cluding chemical engineering. For instance, literature reports show
the application of fractional calculus to rheology (West et al., 2003;
Yang and Zhu, 2011), process control (Aguila-Camacho and Duarte-
Mermoud, 2017; Sopasakis and Sarimveis, 2017; Sarafnia et al.,
2018) and diffusive heat and mass transfer processes (Zecova and
Terpak, 2015; Magin, 2004). Nevertheless, there are very few re-
ports about fractional calculus in the classical chemical engi-
neering literature (Flores-Tlacuahuac and Biegler, 2014; Toledo-
Hernandez et al., 2014a). The development of the tools provided
here is expected to contribute in increasing the attention of the
chemical engineering community about this research area.

Notice that the tools implemented in this work were derived di-
rectly from the algorithms developed independently for fractional
and ordinary models. In both of the algorithms, numerical integra-
tion and dynamic optimization, the tools and the derivations pro-
vided in the literature for each case were combined into a single
general method/technique. The details are as follows.

Many other theoretical issues are significant for the simulation
and optimization of fractional dynamic problems, such as the sta-
bility of the system. Those issues, however, are out of the scope of
this work. For an interesting analysis and the description of the-
oretical developments on the issue of stability, see the work of
Li et al. (2009); the authors describe the Lyapunov direct method
for fractional systems and the Mittag-Leffler stability theory.

3.1. Numerical integration of a set of fractional-ordinary differential
equations (SFODE)

The generalized version of the numerical integration algorithm,
at each time step, includes the estimation of the time history for
those state variables presenting memory effects as well as the con-
ventional estimation for those state variables presenting an ordi-
nary behavior. To simplify the presentation of the algorithm, let x
be the vector of state variables of a fractional-ordinary dynamical
system. Such vector is partitioned into two sub-vectors: x; is the
vector of variables having an ordinary behavior and x, is the vec-
tor of variables presenting memory effects (fractional behavior). x;
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is an nodimensional vector and x; is an ny dimensional vector. The
fractional-ordinary initial value problem is then given by:

Xmk

dat =Gk(X1,X2,t) k:l,Z,...,no (12)
X1(0) =%19

SD?[XZ,ZFI(X],XLI') l=1,2,...,ﬂf (13)

%,(0) =220

where the indexes are used to indicate the kth ordinary state vari-
able and the Ith fractional state variable with a derivative of order
oy In Eq. (13), we are assuming that «; € [0, 1]. G and F repre-
sent functions of both the state variables and time. As in the frac-
tional and ordinary cases, for the n+1-th point in time (where n=0
is the initial condition), the Fractional-Ordinary Predictor-Corrector
(FOPC) method involves a predictor step:

X]kp(tn+1) = X1, (tn) + th(fn, X1 (tn), Xz(tn)) k= 1,2,..., n0(14)

.l n
X3," (tns1) Xy, + ) D bjneri Rt 21 (t)). %2 (tj))(15)
j=0
[=1.2....n

where bj . is given by Eq. (9) for the Ith fractional state variable,
and a corrector step:

X, () =51, 60) + 2 (Gt 1 (). o 6)

+ Gt %" (Ea1), P (Ea11)) | (16)

o)

X2, T mﬁ(tnﬂ, 21" (t1), %" (tn))

ha n (17)
* T & mafilen ()£ ()

X, (tns1)

where aj .1 is given by Eq. (11) for the Ith fractional state vari-
able. Egs. (14) and (16) are simple expressions for ordinary integra-
tion and could be replaced by more accurate approaches, as those
provided by the Runge-Kutta method. This algorithm has been im-
plemented as a user defined function within the Matlab® environ-
ment.

3.2. Euler Lagrange equations (optimality conditions) for a
fractional-ordinary optimal control problem (FOOCP)

In general, there are two main approaches to address optimal
control problems: direct and indirect methods. In direct transcrip-
tion methods, both the control and the state variables are dis-
cretized and then NLP techniques are used to optimize the system
(Andrés-Martinez et al., 2019). On the other hand, indirect methods
focus on deriving the optimality conditions of the problem, and ad-
ditional numerical techniques are then required to solve the result-
ing two-point boundary value problem. Srinivasan et al. (2003) and
Andrés-Martinez et al. (2019) provide a comparison between the
methods for the ordinary case.

This paper studies the indirect method, based on the derivation
of the optimality conditions. The derivation of the Euler-Lagrange
equations for the fractional-ordinary case follows the same general
procedure and uses the same concepts as those applied indepen-
dently to the fractional case (Agrawal, 2010) and to the well known
ordinary case. We present here only the main steps of our deriva-
tions for the combined problem. Three different forms of the ob-
jective function are considered in an FOOCP: Bolza, Lagrange and

Mayer forms (Stengel, 1994). In the following derivation, an objec-
tive function of Bolza form is assumed, since it is the most general
case:

)
j(u)=<p(x1(tf),x2(tf),tf)Jr/0 L(x1(t), %2(t), u(t), t)dt ~ (18)

As before, x; represents the vector of variables that show first
order dynamics; X, is used to indicate those state variables de-
scribed by fractional order dynamics(0 < « < 1). J(u) represents
the objective function, which consists of two parts; the first part
(@) is a scalar, continuously differentiable, function dependent on
the state variables at the final time, t;. The second part is an inte-
gral term of the function (L) that depends on the state and control
variables, u(t), along the whole time interval; L is also assumed
to be continuously differentiable. Finally, J(u) should be defined so
that the optimal control problem is bounded and feasible.

The constraints of the FOOCP include bounds to the control
variables, up;, < u(t) < umgx, the set of first order differential equa-
tions:

dx1
ar = G(Xq,%x,u,t) (19)
x(0) = X
and the set of fractional order differential equations:
Cna
D x = F(x1,%,u,t
oDE %2 (%1, %, U, 1) (20)
%0) = x50

The initial conditions for both of the sets of state variables are
known. G and F are functions of time as well as the state variables.
For simplicity in the representation and in the derivations, it is as-
sumed here that all of the fractional differential equations have the
same fractional order, «. From the numerical point of view, the
fractional orders can be different for each of the fractional equa-
tions, since our approach is not limited in that sense. However,
we should notice that, at the current state, our approach does not
include any particular consideration to address noncommensurate
systems. Therefore, special care must be taken when the state vec-
tors contain elements with different physical units.

For a fractional-only optimal control problem, Agrawal (2004,
2008) provided the optimality conditions when the fractional
derivatives assume either the Riemann-Liouville or the Caputo def-
initions and when the objective function is either in Lagrangian or
linear Mayer form (Stengel, 1994).

In this paper, our following derivation integrates the works of
Agrawal (2004, 2008) for fractional equations and the conventional
variational calculus approach for an ordinary optimal control prob-
lem.

As the first step of the derivation, Eq. (18) is reformulated by
including the Lagrange multipliers, A:

. if
Jw = ga(x1(tf),x2(tf),tf)+/o L(x1 (£), X2 (), u(t), t) dt

tf

+/0 H(G(xl(t),xz(t),u(t),t)—(Z‘;)dt (21)
tf

+f0 AJ(F (1 (1), (1), u(t), t)—GDF Ry )dt

As it was done with the vector of state variables, the vector or
multipliers (also known as adjoint variables) is partitioned too. The
multipliers for the ordinary differential equations are represented
as Aq, whereas A, represents the vector of multipliers for the frac-
tional differential equations.

By defining a fractional-ordinary Hamiltonian as:

H[%: (1), %2(). A1 (£), A2 (8), u(t), t] = L+ A]G + ASF (22)
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Eq. (21) can then be reformulated in terms of that function as
follows:

Jw = (). %(t). 1)

tf
4 /0 [H(®1 (0). %(6), A (0), Ao (0), u(t). t)
dx1
o

(23)

Ay SD?‘xz:|dt

Variational calculus is now applied to Eq. (23). The details of
the derivation are provided in the supplementary information file.
The results for the necessary optimality conditions are:

dv 9H L ., 9G . dF
~at =% ~om T Mam P 2y
oH aL 0G oF
o« _ o0 _ P T T~
[thxz - 8?{2 - 8X2 kl 8X2 +X2 8X2 (25)
M(t) = 22 (1) (26)
f 0% f
i (tf) = B—(tf) (27)
OH 0L .;9G ;OF
a1 =gy + Mg Al =0 (28)

Egs. (19), (20) and (24) through (28) represent the necessary
optimality conditions for a generalized FOOCP. Equation (26) and
(27) provide the end conditions for the ordinary and fractional
multipliers. Eq. (28) allows the determination of the optimal pro-
file for the control variable (expression commonly known as the
control law). The result is a two-point boundary value problem.
The expressions for the end conditions can be simpler; for in-
stance, when the objective function is in Lagrangian form (that is,
no scalar function ¢ appears it the objective function). In that case,
since the terminal conditions for the multipliers are given in terms
of the derivatives of ¢ with respect to the state variables, the end
conditions for the multipliers are equal to zero.

Table 1 provides the fractional-ordinary optimality conditions
derived in this work for the various forms of the objective function
of the FOOCP. The optimality conditions are solved by an iterative
procedure based on the gradient method which is explained in the
following section.

3.3. Solving the optimality conditions of a FOOCP: a gradient method
based approach

The numerical method for solving the optimality conditions
used in this work is based on Poyntriagin Maximum Principle,
which we apply by using the gradient method. We have modified
the conventional gradient method, however, to consider the pres-
ence of fractional differential equations and fractional end condi-
tions. The following is a summary of the algorithmic steps that we
propose in our optimization strategy:

Step 1. Propose an initial feasible guess for the control variable
profile u(t) = ug(t).

Step 2. Use the fractional-ordinary predictor-corrector technique
to perform forward integration of the state equations (ordinary and
fractional; Egs. (19) and (20)) by using the known initial condi-
tions. Time profiles are obtained for x; and x,.

Step 3. Use the end conditions of the Lagrange multipliers A,
and A, and the fractional-ordinary predictor-corrector technique to
perform backward integration of Eqs. (24) and (25) to obtain the
time profiles of those multipliers.

Step 4. Update the control variable profile. Using a gradient
method-based approach, the new estimation is given by the fol-
lowing expression:

u u & |:8Hi|
k+1 = Yk — ¢k
Jdu B

where ¢, is a scalar chosen for each particular problem; its def-
inition generally implies trial and error. If the value is too small,
the number of iterations needed grows significantly, but if it is
too large, convergence might not be achieved. The derivative of the
fractional ordinary Hamiltonian with respect to the control variable
is given by Eq. (28).

Step 5. The algorithm returns to Step 2 and continues un-
til the convergence criterion is met. The criterion might be in
terms of sufficiently small values of either [%—’z]kor the difference
(Ugyy — )

If the objective function is in either linear Mayer or Bolza forms
(i. e. ¢ # 0), a numerical approximation to the end condition of
the fractional multipliers, A, is needed. The description of an algo-
rithm to estimate that end condition is given in the supplementary
information file accompanying this paper.

In summary, this section has described the three main nu-
merical/theoretical tools used in our work. The FOPC method of
Section 3.1 can be applied to simulate a SOFDE, but it is also a fun-
damental tool for the non-linear correlation of experimental data
to determine fractional orders of the fractional differential equa-
tions and, as seen in Section 3.3, to support the algorithm for opti-
mization. The generalized optimality conditions of Section 3.2 and
the gradient method of Section 3.3 are together the main basis for
our optimization approach. An additional contribution is given in
the next section, as we suggest an approach to reformulate frac-
tionalized dynamic systems.

4. Fractionalization of ordinary models and our reformulation
approach

In compartmental modeling, as the name suggests, a complex
system under analysis is divided into compartments. In particular,
this modeling approach provides a framework to study the dynam-
ics of materials flow (drugs, nutrients, etc.) among different com-
partments. Each compartment represents a group of components
of the system with similar characteristics; a compartment can be
either a conceptual or a physical region.

4.1. Fractionalization of an ordinary compartmental model

Dokoumetzidis et al. (2010a) explain that incorporating frac-
tional behavior in some compartments of an ordinary multi-
compartmental model is not as simple as just assigning a frac-
tional order to the derivatives in the left-hand side of the ordinary
differential equations of the model; the authors show that such
practice may produce inconsistent systems which violate mass bal-
ances. Therefore, they propose a formal fractionalization strategy
so that a consistent fractional model can be derived from the or-
dinary model. Such strategy is applied to the case studies of this
work.

As a brief summary, the fractionalization approach involves
(please see Dokoumetzidis et al., 2010b):

(i) Integrating the ordinary differential equations to achieve a set
of integral equations.

(ii) Modifying the kernel of the integral terms to appropriate func-
tions in power-law form, so that the integral terms become
Riemann-Liouville fractional integrals.

(iii) Taking the first derivative to each of the resulting equa-
tion so that the Riemann-Liouville fractional integrals become
Riemann-Liouville fractional derivatives.
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Table 1
Necessary optimality condition ordinary-fractional optimal control problems.

Objective function

Euler-Lagrange optimality
conditions

JW) = X1 (ty), X2(ty), tr) +
JEL, (8), %0 (1), u(t), t)de

JW) = @& (ty). %2(t5). ty)

J@) = [T LG (1), %:(0), u(t). t)dt

dvi _ OH _ T G T OF
T dr axé 8x1 A‘1 0% )"2 0x;
o9

Ai(ty) = pr ( f)

oH T 3G T 9F
Dfds =5, = 8x2 o+ Al 7 T A g
11_°‘)~2(ff) = a_xz(tf)
31‘1 TOoG TOF __
G T ALGE + LG =
_% — 3H — T3_5+ T OF
dt b - 18x1 28?{]
(tf) = 3(p (tf)
T BG T OF

talgf O‘)~2(gf) = Wza(ff)
H G F
H _ )T | ATOF

19u 20u —

d\; _ 9H _ oL TG | 1T 9F
T dt T 9xg axl + )"1 0x + )‘2 ox
CD"‘X b LT T 9G AT T OF

X, — 19x, 2 0%,

)ul(tf) = )\'Z(tf) =

OH _ DL 4 }THG TBF_
Qu — Ju A‘18u )"ZBu_

(iv) Rewriting the Riemann-Liouville fractional derivatives as the
equivalent Caputo fractional derivatives.

Once the fractionalization approach is applied to an ordinary
model, each of the equations of the resulting system involves both
ordinary and fractional derivative operators, so that the system can
be considered as a linear multi-term set of FDEs. In the compart-
mental models used in this work, the units of the transfer rates
among compartments in the fractionalized equations are consis-
tent.

In the work of Dokoumetzidis et al. (2010b), given the form
of the equations, the authors suggest rewriting the system in the
Laplace domain and then using a numerical inverse Laplace trans-
form algorithm to simulate the system. The approach proposed in
this paper does not apply such transformation. Instead, a reformu-
lation of the linear multi-term FDEs allows the use of the numeri-
cal tools developed in this work. The reformulation is described in
the following subsection.

4.2. Proposed reformulation of a fractional model

The main step of the reformulation approach involves the in-
corporation of artificial variables to represent the fractional deriva-
tives of the original state variables. Consider a simple set of liner
multi-term FDEs of the form (0 < o < 1):

dx

- Th oD = fi(at) (29)
dxyq

d +)\.2 OD X2] = fz(x, t) (30)

That kind of equations is commonly found when the fractional-
ization approach of the previous subsection is applied to an or-
dinary model. The first idea is introducing a new variable for

each fractional term involved in the equations. Hence, by defining
X2y (t) = ng*o‘le, where x5,(0) =0, Egs. (29) and (30) are refor-
mulated as a fractional-ordinary system:

Cnl-a
oD ¥%21 = X2

dx
i = fi(xt) — A1 X3
dx
% = fz(x,f) 7)\.2 X22

As a second step, the reformulation requires an expression to
estimate the time dependent behavior of the artificial variable x,,.
That is obtained by using both the original state equation of vari-
able x,; and the commutative property of fractional derivation
given by Eq. (3). Recall that, in Eq. (3), « and B are arbitrary con-
stants; also, when the fractional order of a fractional derivative is
integer, the fractional derivative reduces to an ordinary derivative.
The outcome of this step is as follows:

o1 6Dl = G0y, = D8 (S0} 21) = §DF
Therefore, the system of equations becomes:

oD X1 = X23 (31)

dx

g =hED—A x (32)

0D X2 = foa(X.t) — Ay Xap (33)

The significance of this reformulation is that the set of multi-
term FDEs becomes a SFODE, which can be approached by using
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Fig. 1. Compartmental model for Amiodarone distribution.

the tool proposed in this work. Garrapa (2018) discusses and al-
ternative approach to solve multi-term FDES through a numerical
algorithm to integrate FDEs.

5. Case studies

We selected two case studies whose models, simulations and
optimal results were previously reported in the literature. Recent
research efforts (Copot et al, 2017a; Copot et al, 2017b; lonescu and
Kelly, 2017) shows that the modeling of drug absorption, distribu-
tion and elimination within the body has to consider anomalous
phenomena caused by drug trapping and tissue heterogeneity. The
models of the case studies consider some of those issues but do
not implement some of that current knowledge about the mod-
eling of biological phenomena through fractional calculus. Never-
theless, we are keeping the models as they were reported for two
reasons. Firstly, their mathematical nature results (through the re-
formulation that we propose) in a fractional-ordinary model (and
fractional-ordinary optimal control if a performance index is in-
cluded), which is the main focus of this work; secondly, they could
help us assess the performance of our methods by direct compari-
son. The description of the models and the reformulation as SFODE
are provided here.

5.1. A Compartmental model in pharmacokinetics: administration and
absorption of amiodarone

The first case-study involves the administration and distribu-
tion of the drug amiodarone within the body. It is a simple ex-
ample, but it involves all of the elements needed to clearly illus-
trate our approach. Amiodarone is a drug used to prevent and treat
various types of irregular heartbeats; it has serious side effects in-
clude lung toxicity, as well as liver, vision and thyroid problems.
A pharmacokinetics compartmental model has been provided by
Dokoumetzidis et al. (2010b). The formulation suggested by such
authors is derived as follows.

5.1.1. Ordinary model for the amiodarone case-study

Fig. 1 provides a schematic representation of a compart-
mental model for Amiodarone pharmacokinetics proposed by
Dokoumetzidis et al. (2010b). The system considers a central com-
partment to represent perfused tissues and general circulation as
well as a peripheral compartment used for representing deeper
tissues. The processes of interest include mass transfer from the
central to the peripheral compartment, mass elimination from the
central compartment and a mass flux from the peripheral to the
central compartment.

Assuming first order dynamics for all of the mass transfer pro-
cesses, mass balances for each compartment result in:

dA,

e —k1pA1 (t) + kp1Ax (t) — kioAq (t) + u(t) (34)

dA,
dt
where A;(t) and A,(t) represent the masses of the drug in each
compartment and the various k;; represent the mass transfer rates
between the compartments or the elimination rate. u(t) is the in-
put rate from the drug to the central compartment.

= kA1 (t) — koA (1) (35)

5.1.2. Fractionalization of the model for the amiodarone case-study
Applying the fractionalization strategy of Section 4.1 to
Egs. (34) and (35), the expressions are reformulated as:

dA;

E = —(’(12 + klO)Al + kz] ngiaAz + u(t) (36)
dA
th = ’(12A1 — k21 SDgiaAz (37)

The fractionalization assumes that the mass transfer from the
peripheral compartment (deeper tissues) to the central compart-
ment (general circulation) follows anomalous fractional behavior
(the corresponding rate constant is k). Notice that -Egs. (36)-(37)
involve both ordinary and fractional derivative operators. The units
of the variables and parameters are as follows: units of mass for A,
and A,; time=® for ky;; time~! for kipand kqo; mass/time for u. Fol-
lowing the discussions presented by Dokoumetzidis et al. (2010b),
the units of the rate constant k,; (time~%) are consistent with the
slower kinetics arising as a result of the (non-exponential) power-
law nature of the fractional derivative in Eq. (36). This slower ki-
netics will eventually lead to drug accumulation at long adminis-
tration times; such a behavior is consistent with drug trapping in
biological tissues.

5.1.3. Proposed reformulation of the fractional model for the
amiodarone case-study

When the reformulation approach of Section 4.2 is applied to
Eqgs. (36) and (37), a new artificial variable B(t) is defined as B(t) =
SD}*"‘AZ, where B(0) = 0. As a consequence of the definition, units
of B are mass/time’®,

The result is:

¢D!-*A, =B (38)
dA

dit] = — (k12 + k10)A1 + ko1 B + u(t) (39)
% = I<12A1 - ’(2]3 (40)

Eq. (38) provides the dynamics of A, and Eq. (39) the dynamics
of A;. The dynamics of B(t) is obtained by applying Eq. (3) to the
derivative of Eq. (40):
dA,
dr

Given the previous identity, it is important to notice that units

of both ‘%2 and gD[“B are mass/time.The final result is the SFODE

D!, = S0, D2 (§D-“A) — D¢ B

given by Eqs. (41) through (43).

CDlI-“A, =B (41)
dA

d71“1 = — (k12 + k10)A1 + ko1 B + u(t) (42)
SD?B = k]zA] — kz]B (43)

The equations of the system are no longer multi-term FDEs.
Instead, the system includes now one ordinary differential equa-
tion and two fractional differential equations and, therefore, it
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Fig. 2. Amiodarone mass in the central (A1) and peripheral (A2) compartments after an initial dose of 0.1 ng.

can be integrated directly with the FOPC method explained in
Section 3.1. Fig. 2 shows the profiles of amiodarone during seven
days in the central and peripheral compartments obtained by
the numerical integration. The model parameters suggested by
Dokumetzidis et al. (2010b) are used in this work; the values are
a = 0.5870, k;p=14913 day~', k;» = 29522 day~! and ky; =
0.4854 day~“. Amiodarone accumulates in deep tissues; in fact,
if the simulation of the model continues further in time, it can
actually show that, after thirty days of the initial dose of 0.1 ng,
its amount in the blood plasma is basically zero, but a significant
amount (about 0.024 ng) can still be found in the peripheral com-
partment. The fractional ordinary model will be further studied to
evaluate our approach to solve FOOCPs in Section 6.

5.2. A thermal hydrolysis: production of mezcal from agave

The ordinary model of this example has been taken from the
work of Garcia-Soto et al (2011). The fractional calculus approach
was reported by Toledo-Hernandez et al. (2014a).

As pointed out by Toledo-Hernandez et al. (2014a), the ordinary
differential equations of the ordinary model are quite simple and
fractional calculus might not represent a significant modeling ad-
vantage in this case. However, those authors use that example to
explain the fractionalization technique described in Section 4.1. We
also use this case-study since, besides the fractionalization strat-
egy, literature provides optimization (optimal control) results ob-
tained by an iterative approach based on the discretization of the
time intervals.

This case represents the thermal treatment of fructans (from
Agave salmiana) as the first step in mezcal production given by the
following reaction (Garcia-Soto et al, 2011):

Fructose
Fructans = | Glucose | Reducing Sugars
other
ks Fur fural
— | 5 — (hydroxymethyl) fur fural | Furans
other

The fructans (P) are hydrolyzed into reducing sugars; the sug-
ars further undergo partial degradation to form furans (D). The

rate constants of hydrolysis and degradation are kj, and kg, respec-
tively. The ordinary and the fractionalized models were reported
by Toledo-Hernandez et al. (2014a) and are provided in the sup-
plementary information file which accompanies this manuscript.

5.2.1. Reformulation as a SFODE

In this case, the reformulation of the fractionalized model re-
quires the definition of two artificial variables (two new fractional
differential equations). The resulting SFODE for this example in-
cludes four fractional differential equations and one ordinary dif-
ferential equation.

ED/MP(t) =X (44)

SDIM(t) =Y (45)

Cpeix — _k, [x +PO) (11)} (46)
aq

ap—1

cpry =k, [x +P0) L } kq [Y M) — o ] (47)

(o) I'(a2)
dD o1
—— =kq4|Y +M(0) =— 48
Initial conditions are given by P(0) = Py, M(0) = My, D(0) = Dy,

X(0) =0 and Y(0) =0. Experimental data and the time profiles
obtained in this work are shown in Fig. 3; the numerical integra-
tion of Eqs. (44) through (48) was done by using our implemen-
tation of the FOPC method described before. Results are basically
the same as those reported by Toledo-Hernandez et al. (2014a) that
used Laplace transformation for the simulations. Table 2 shows the
model parameters used for both the simulation of Fig. 3 and the
optimization problem described in the following section.

6. Optimization of the SFODE: formulating and solving the
FOOCP

To illustrate the use of the optimality conditions and the op-
timization strategy proposed in Section 3, the fractional ordinary
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Fig. 3. Time profiles of reducing sugars (a) and furans (b). Experimental values are compared against the integration of the SFODE of the fractional model by the FOPC
method.
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Fig. 4. Optimal infusion rate of amiodarone.
Table 2 ) 6.1.1. Euler Lagrange optimality conditions
]t\,";’f:llnﬁ’g;aerl“eter for the thermal hydrolysis frac- From the previous SFODE, the fractional-ordinary Hamiltonian
1 .

Temperature= 96°C Temperature= 106°C

o =0.9738 a; = 0.9738
o = 0.7448 o = 0.7448
ky, = 0.0552 h= ky, = 0.1729 h~

kg =5.0789 x 10~* h—= kq =0.0014 h~*

models formulated and simulated in the previous section are now
modified to conform fractional-ordinary optimal control problems;
the derivations and optimization results involved in each of the ex-
amples are described next.

6.1. Administration and absorption of amiodarone

In the first example, the objective is to achieve and main-
tain the necessary amount of amiodarone in compartment 2
(deeper tissues), A,, and, at the same time, to avoid reaching
the amount at which the drug becomes toxic to the organism.
Herceg et al. (2017) address a similar problem, considering specific
discrete doses every half a day for seven days. The corresponding
FOOCP used in this work is given by Eqs. (49) through (54).

Minimize | = / () — 8)2dt (49)
0

Subject to the SOFDE derived previously and the bounds of the
variables:

SDI=“A, =B (50)
dA

d7t1 = —(k]z + k]o)A1 + k21B + u(t) (5])
SD?B = k]zA] — kz]B (52)
A], A2 < % (53)
0 < U < Umax (54)

where § is the target amount of A,; € is the toxicity bound for the
amiodarone and upgy is the maximum allowable dose. Initial con-
ditions are A;(0) =A,(0) = B(0) = 0. The goal is to find the opti-
mal values of the drug infusion rates represented by u(t).

is defined as:

H = (Ay — 8)% + Bhy + (— (k12 + ki0)A1 + k1 B+ u(t)) Az
+ (k12A1 — k21B)A3

The optimality conditions derived from the Hamiltonian are:

oH
EDg;a)\q = TAZ = 2(A2 — 8) (55)
dA JH
_th = TA] = —(k12 + klO))\Z + klZ)\3 (56)
oH
ED?[}\@ = ﬁ = )\.1 —+ 1(2])\.2 — 1(2])\.3 (57)

The objective function is in Lagrangian form, so that A;(tf) =
A2 (tr) = A3(ty) = 0 and the Caputo definitions of fractional deriva-
tives are used directly. Finally, the control law is:

JoH
Jdu

The two-point boundary value problem is defined then by -
(Egs. (50)-(54) and -(Egs. (55)-(57) as well as by the initial con-
ditions of the state variables, the end conditions of the multipliers
and the control law. Notice that the units of all of the terms of
the Hamiltonian as well as those of Eqs. (55)—(57) are consistent.
Recall that the units of the original variables and parameters are:
units of mass for A; and A,; time=® for kyy; time~! for kyand kyg;
(mass/time) for u; units of B are (mass/time!"®). Further, the units
of the new adjoint variables are (mass time!®) for A;, (mass time)
for Ay, and (mass time) for A3. In that way, the units of all of the
terms of the Hamiltonian are (mass?); the units of all of the terms
of Egs. (55) and (56) are units of (mass); finally, the units of all of
the terms of Eq. (57) are (mass time!®),

A =0

6.1.2. Solving the Euler Lagrange optimality conditions with the
gradient method

The system can be solved by using the gradient method
proposed in this paper. The values used for the modeling
parameters are 8 =0.4ng and O =0.5ng; further, four cases
of the maximum allowable dose were considered, umgx =
[1.0, 0.75, 0.5, 0.25] ng/day. Fig. 4, Fig. 5 and Fig. 6 show the op-
timal infusion rates and the amounts of amiodarone in both of the
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Fig. 5. Optimal profile of amiodarone in the central compartment.

compartments. The results for the control variable represent a con-
tinuous administration route for the amiodarone which, in princi-
ple, would require a continuous infusion device that can provide
the appropriate variable amounts of drug during the entire time
interval. The optimal profiles present a similar trend. The infusion
rate starts at the maximum allowable dose until the target amount
of drug in the tissues is achieved. Then, the infusion rate rapidly
decreases and is kept at lower values, but still maintaining the
mass of amiodarone at the appropriate target level § = 0.4ng. The
maximum allowable dose is related to the time period required to
reach the target; as umqx increases, the time needed decreases. That
is also consistent with a decrease in the objective function.

6.1.3. Practical considerations for the administration of amiodarone:
treatment based on discrete doses

For practical purposes in this particular example, notice that a
continuous administration of the drug cannot be undertaken for
long periods of time. In such case, it is generally preferred to pro-
vide specific doses of the drug in particular discrete points in time
during the treatment. That issue will be addressed in this section.

In such case, the goal is to determine the optimal amount of
drug to be administrated during finite periods of time of length
At within the whole time interval. Let us define n+ 1 time points
ti (i=0,1,2,...,n) t; in the time interval [to, tf], where the time
periods are defined as At =t;,1 — &;.

As the first step in the approach, the continuous optimal profile,
u*(t), as the one estimated in the previous section, is integrated
along each of the time periods; the idea is to calculate the total
amount of amiodarone to be administered at each period, d;:

[i+1
di = / w (t)dt

An additional assumption in this section is that the total dose to
be administrated in each period, d;, will be provided at the begin-
ning of the period, in t;. Notice that the doses d; are inputs to com-
partment 1 and affect directly the ordinary dynamics of variable
Aq; nevertheless, the values of A; will indirectly affect the frac-
tional dynamics of A, because of the coupling among the differen-
tial equations. Also notice that the estimation of d; must consider
that the behavior of the system variables is fractional.

Our study was conducted for three different administration
routes, involving a time interval of seven days and constant time
periods of At equal to 6, 12 and 24 h; that is At =0.25, 0.5and 1
days. The results for time periods of 12 h are presented in detail

here, since the work by Herceg et al. (2017) consider such admin-
istration route; the rest of results are provided as supplementary
material. Table 3 presents the doses administrated every 12 h for
each of the four cases of Figs. 4-6 (four values of the maximum al-
lowable infusion rate umqx). The discrete doses of Table 3 were es-
timated by using the optimal infusion rates of Fig. 4. The profiles of
the amount of amiodarone in each of the compartments are shown
in Figs. 7 and 8. Notice that the target value in compartment 2 is
achieved from day 1 with small variations during the seven days of
the administration of the drug. As a validation of the results, anal-
ogous profiles were obtained by Herceg et al. (2017) for an admin-
istration route which is similar as the ones defined in this work;
their numerical approach is quite different though, since they use
a rational approximation to the fractional derivatives.

Table 4 shows the value of the objective function J=
t

[ (Ay(t) — 8)%dt obtained for the different values of the maximum

0
allowable infusion rate. The three administration routes are shown
for comparison purposes. For At =1 day and upmex > 0.5, occurs
that dy > 0 and A{(0) > 0; therefore, no feasible solutions are
achieved in those cases.

As a final note, it is important to emphasize that there is no
limitation on the length of the time interval used for discrete
dosage; the intervals can be constant, as in the previous results, or
estimated otherwise so that the administration route considers any
anomalous effect, such as the dynamics of molecular binding dur-
ing the drug diffusion. lonescu et al. (2016) show that equidistant
discrete dosages can lead to drug accumulation within the body;
therefore, in order to avoid harmful overdosing, (non-linear) loga-
rithmic time-spaced dosages can be administered. To illustrate this
issue, Fig. 9 shows the amounts of amiodarone in compartment
2 for two different discrete dosing time periods using umgx=0.5;
one curve corresponds to a constant discrete dosing time period of
At=0.5 days; in the other curve, the dosing time period was es-

timated by the non-linear expression t; = (t;_{%* + aAt“)]/Ot with
A1=0.5 suggested by Hennion and Hanert (2013). In any case, the
discrete doses are estimated by using the corresponding optimal
continuous infusion profile as the one shown in Fig. 4.

6.2. Thermal hydrolysis

This section describes the optimization results for the
fractional-ordinary model representing the thermal hydrolysis used
in mezcal production. To incorporate the effect of temperature,



12

V. Rico-Ramirez, ].C. Barrera-Martinez and E.O.

Castrejon-Gonzalez et al./ Computers and Chemical Engineering 133 (2020) 106651

0.45 T ! T T T T
04 - . :
/ ; : ("' urnax=1.0ng/day
035 F e g ] ...... SR e A e S e Sxee e ———umax:D.?Sngj’day ]
4 : S .| mmeEs umax=0.50ng/day
== ~umax=0.25ng/day |

0.0s -, A, .............

Time(days)

Fig. 6. Optimal profile of amiodarone in the peripheral compartment.
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Fig. 8. Amiodarone in compartment 2 for an administration route of doses every 12 h.
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Table 3

Doses (ng) provided every 12 h estimated with the optimal infusion rates.

Time (days)  Doses umg = 1 ng/day

Doses umax = 0.75 ng/day

Doses upmax = 0.50 ng/day Doses upmax = 0.25 ng/day

0 0.4900 0.3675 0.2450 0.1225
0.50 0.2657 0.3515 0.2450 0.1225
1.0 0.0000 0.0355 0.2353 0.1225
1.50 0.0074 0.0029 0.0330 0.1225
2.0 0.0241 0.0218 0.0080 0.1225
2.50 0.0207 0.0220 0.0218 0.1224
2.0 0.0183 0.0189 0.0211 0.0479
3.50 0.0177 0.0178 0.0185 0.0133
3.0 0.0170 0.0172 0.0173 0.0173
450 0.0163 0.0166 0.0170 0.0194
5.0 0.0161 0.0163 0.0167 0.0181
5.50 0.0149 0.0148 0.0149 0.0150
6.0 0.0123 0.0125 0.0129 0.0150
6.50 0.0314 0.0321 0.0327 0.0354
0.45 : . T T T T
0.4+ — S
- e — 7 e ._4‘
0.35 .
Constant dosing time period
0.3 ——=MNon linear dosing time period ||
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Fig. 9. Amiodarone in compartment 2 for linear (Atr=0.5 days) and nonlinear dosing time periods.

Table 4
Objective function of the FOOCP for the different administration
routes
Umax (ng/day) At =0.25days At =0.5days At =1day
1.0 4.7696 3.1400 -
0.75 6.1829 4.3692 -
0.50 8.9611 7.0141 4.0242
0.25 17.3172 15.1182 11.5182

Arrhenius-like expressions are considered in the kinetics constants
of the reactions:

kp = kq e=E/D)

kg = kpeE2/D

The values of the constants kq, k;, E; and E, are estimated
from experimental data provided by (Garcia-Soto et al, 2011). To
approach the optimization of the system, the objective is defined
as the maximization of the final concentration of reducing sugars,
since they participate directly in the alcoholic fermentation to ob-
tain mezcal; temperature is defined as the control variable. The
same considerations were used by Toledo-Hernandez et al. (2014b).
The FOOCP developed here is:

Minimize ] = —M(ty) (58)

Subject to:
SDIT™P(t) =X (59)
D/ "M(t) =Y (60)
Cra AT gt
SDANX = —kjeA/D X +P(0)W (61)
P AT !
CDe2yY = kye A/ X+P(0)7F(a1)
—Ay)T t!
— kyeA2/) Y +MO) s (62)
2
dD t(xz—l
= _ (=Az/T)
o = kae |:Y +M(0) F(Otz)i| (63)
369.15 < T < 379.15 (64)

The bounds of the temperature are defined based on the data
provided by Garcia-Soto et al. (2011).
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6.2.1. The Euler-Lagrange optimality conditions for the thermal
hydrolysis
The fractional-ordinary Hamiltonian function is given by:

oq—l
H = XX + YAy —kje~ Al/T)|:X+P(O)F( )}

{k el-A/m) [x +P(0) lf (l_l)]

kyelAm [y FMO) _1)] }
+ kpeA2/D |:Y +M(0) lfoé _1)]

Therefore, the differential expressions and the end conditions
for the multipliers are given by -(Egs. (66)-(70).

(65)

,a JH
tD:f () = 5p = 0 A (tf) =0 (66)
» oH .
Dy, 2 (t) = a5 = Df o (tr) = -1 (67)
o oH
tthl)\.?,(t) = 87 = )\4] — k]e(*A1/T))L3 + k]e(7A1/T))\‘4
ks(ty) = 0 (68)
o oH
tthz)‘-4(t) =5y = ha — kpeCAD )4 4 kpeA2/T) )
ha(ty) = 0 (69)
dis(t) OH
g~ 0 ks (tr) =0 (70)

The two point boundary value problem consists of a SFODE de-
fined by -(Egs. (59)-(64) and (66)-(70). The initial conditions are
P(0) = Py, M(0) = Mg, D(0) =Dgy, X(0) =0 and Y(0) =0. A sim-
plification can be made previous to the numerical solution. By us-
ing Eqs. (66) and (70), one can show that A5(t) =0 and A;(t) =0
Finally, the expression for the control law is given by Eq. (71); the
result A5(t) = 0 has already been applied:

oH A1 o1
=k eCA/D X 4+ P(0
[ ()r( )}

aT —
tal—l
{ e [X PO )i|

Ay 5 2-1
ke(A/T)|:Y+M(O)F( )“ =0

The numerical approach based on the gradient method
(Section 3.3) is used to obtain the solution to the FOOCP. The
optimal value of the objective function is 181.6886 g/l. Fig. 10
shows the optimal temperature profile. Fig. 11 shows the results
for the state variables. Toledo-Hernandez et al. (2014b) addressed
the same problem. However, their approach was significantly dif-
ferent, since they used a method based on the Laplace transfor-
mation, the shooting method and non-linear programming tech-
niques. Since Laplace transformation requires the system to be lin-
ear, Toledo-Hernandez et al. (2014b) divided the time interval in
several time periods. Then, they assumed that the temperatures re-
main as constant in each time period, so that they can assume a
linear behavior in each of such periods. Their result is therefore
a step-wise profile, obtaining an optimal value of temperature to
be kept in each of the time periods. In this work, no transfor-
mation is required; further, the non-linearity of the expressions

(71)

does not impose a limitation to the approach. Further, a contin-
uous optimal profile is achieved. Nevertheless, for this example,
the optimal profiles of the state variables obtained by using our
continuous temperature profile are not significantly different from
those obtained with the step-wise temperature profile of Toledo-
Hernandez et al. (2014b).

7. Summary and conclusions

Fractional calculus operators allow representing the dynamic
behavior of variables that show memory effects. Generalized dy-
namic models, however, are expected to involve not only state vari-
ables that can be represented by fractional operators, but also vari-
ables that are better represented by conventional ordinary dynam-
ics. In this context, our work describes conceptual and numerical
tools that can be used for the modeling, simulation and optimiza-
tion of systems that include both fractional and ordinary differen-
tial equations.

On the one hand, the most relevant aspects and developments
of this work are:

(i) As a direct extension of the predictor corrector techniques used
for the integration of either ordinary or fractional differential
equations, a combined approach is implemented in this work,
so that the predictor-corrector method simultaneously can han-
dle both types of equations in the same dynamic model. Such
integration technique has proven to be a fundamental tool for
the simulation and optimization problems addressed in the
case studies. Although a purely fractional integration method
could be applied for the integration of both integer and frac-
tional differential equations, the use of a fractional technique
for the integration of an ordinary equation is not practical, since
the computational effort increases unnecessarily. Therefore, the
main contribution of the method developed here lies basically
on the decomposition of the equations and on the numerical
implementation of the strategy. As described, the fundamentals
of this technique and other multi-step methods have already
been reported in the literature (Garrapa, 2018).

(ii) A conceptually consistent approach to fractionalize ordinary
models (Dokoumetzidis et al., 2010b) results in systems of lin-
ear multi-term FDEs that include both fractional and ordinary
differential operators in the same equations. The reformulation
approach used in this work allows the separation of the dif-
ferential operators, so that a set of fractional-ordinary differ-
ential equations is obtained (only one operator in each equa-
tion). This reformulation is straightforward but significant, since
it allows the use of the generalized predictor-corrector method
and the optimization strategy developed in this work to address
fractional-ordinary optimal control problems.
A generalized version of the Euler-Lagrange optimality condi-
tions for fractional ordinary optimal control problems is pro-
vided in this work, so that the optimization of the combined
problem can be solved through a gradient based approach. The
expressions obtained for the generalized conditions are based
on the derivations provided by Agrawal (2004, 2008) and on
the classical theory of optimal control (Stengel, 1994).
(iv) Two case studies reported in the literature are used to vali-
date our results. Previous solution approaches for both exam-
ples suggest the use or transformation methods to simulate and
optimize the systems. Our approach represents and alternative
that does not require such transformation to obtain the solu-
tion.

For the thermal hydrolysis case study, a comparison with the

approach used for Toledo-Hernandez et al. (2014b) shows that

the numerical advantages of not using an inverse Laplace trans-

(iii
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Fig. 11. Optimal profiles for the thermal hydrolysis case-study.

formation approach are significant in the case of an optimiza-
tion problem.

For the example of the administration of amiodarone, a contin-
uous optimal profile for the infusion rate was determined. For
practical considerations in this particular example, an alterna-
tive approach was provided for the case that the administra-
tion route of the drug requires discrete doses at given times
during the treatment. The optimal results are quite similar to
those obtained by Herceg et al. (2017), who studied an analo-
gous administration route for amiodarone, but following a ra-
tional approximation approach.

(vi

=

On the other hand, one of the limitations of this work is still
the size of the problems that have been solved through the pro-
posed approach. No large-scale problems have been tested yet. On
this regard, from the computational point of view, the performance
of the gradient method in the fractional-ordinary case is similar
from its performance in the ordinary case; its convergence ca-
pabilities as well as the computational effort needed are signifi-

cantly affected when the number of control variables is increased.
That is of course a relevant issue on large scale problems. There-
fore, alternative techniques should be explored to solve the two-
point fractional-ordinary boundary value problem which results
from the Euler-Lagrange Optimality conditions used on this paper.
In fact, fractional-ordinary optimal control problems could also be
approached by direct transcription methods; for such case, how-
ever, efficient discretization methods for fractional-ordinary prob-
lems in the time domain would be needed. Finally, as another ad-
ditional guidance for future work, large-scale case-studies involv-
ing fractional-ordinary equations are still to be developed; the real-
world applications described by Sun et al. (2018) appear as excel-
lent suggestions to complete such task.
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