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a b s t r a c t 

This work proposes an approach to the modeling and optimization of systems involving a coupled set 

of fractional and ordinary differential equations. We first present a generalized version of the predictor- 

corrector integration method, which can integrate simultaneously both fractional and ordinary differential 

equations. Further, we describe an analytical/numerical dynamic optimization strategy that combines the 

generalized optimality conditions for a fractional-ordinary system derived in this work, the generalized 

integration technique and the gradient method. The approach is illustrated through a compartmental 

model in pharmacokinetics as well as a fractional model for a thermal hydrolysis. In both cases, after we 

apply a formal fractionalization strategy, we propose a reformulation of the models to obtain fractional- 

ordinary dynamic systems. The systems obtained are further posed within an optimization framework 

and solved through our approach as fractional-ordinary optimal control problems. Our results show the 

theoretical and numerical consistency of our approach. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction: fractional calculus and operators 

Various engineering applications have recently demonstrated

he modeling capabilities of fractional calculus; such concept,

hich introduces derivatives and integrals of non-integer or-

er, has been used to represent the behavior of complex

henomena in several areas, including rheology (viscoelastic

uids), heat diffusion, interfacial mass transfer, process con-

rol, electrochemistry, classical mechanics, chaos, fractals, im-

unotherapy, epidemiology, sensor development and many other

elds ( Lopes et al., 2019 ; Sarafnia et al., 2018 ; Sápi et al.,

017 ; Sopasakis and Sarimveis, 2017 ; Flores-Tlacuahuac and

iegler, 2014 ; Diethelm, 2013 ; Ding et al., 2012 ; Almeida and Tor-

es, 2011 ; Kovács et al, 2011 ; Magin, 2010 ; Tenreiro-Machado et al.,

010 ). Compartmental models for drug absorption, distribution and

limination within the body (pharmacokinetics) have also been

ormulated with the aid of fractional calculus ( Pereira, 2010 ). Var-

ous contributions involve applications to the administration of

articular drugs; for instance, amiodarone ( Dokoumetzidis et al.,

010b ), diclofenac and bumetanide ( Popovic et al., 2010 ), propofol

 Copot et al., 2013 ) and doxorubicin ( Ionescu et al., 2016 ). Further,
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ecent contributions describe the significance of fractional calculus

or modeling biological phenomena in a more general sense, and

how how fractional kinetics are natural solutions to the diffusion

roblems in biological tissues ( Ionescu et al., 2017 ; Ionescu and

elly, 2017 ; Copot et al, 2017a ; Copot et al, 2017b ; Ionescu et al.,

015 ; Ionescu et al, 2013 ; Petráš and Magin, 2011 ;); interesting

henomena, such as drug tissue trapping and tissue heterogene-

ty, have been addressed in those works. Finally, the work by

un et al. (2018) provides an excellent review of real-world appli-

ations of fractional calculus in various engineering fields, which

an motivate further methods and model developments on this

opic. 

.1. Fractional operators 

The modeling capabilities of fractional calculus are mostly due

o the non-local property of fractional operators, which can be

sed to represent the behavior of state variables showing memory

ffects. The literature reports several definitions for the fractional

erivative, including the expressions derived by Riemann–Liouville,

aputo, Riesz, Riesz–Caputo, Weyl, Grunwald–Letnikov, Hadamard

nd Chen ( Sales Teodoro et al, 2019 ); however, the definitions by

iemann–Liouville and Caputo are the most widely used. The left

aputo definition for the fractional derivative of function f ( x ) is

iven by Eq. (1) , where D is used to represent the fractional op-

https://doi.org/10.1016/j.compchemeng.2019.106651
http://www.ScienceDirect.com
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erator, C stands for Caputo, x is the independent variable, α is a

positive real number (order of derivative), n is an integer number

such that n-1 <α< n and � is the Gamma function: 

 

a D 

α
x f ( x ) = 

1 

�( n − α) 

∫ x 

a 
( x − t ) 

n −α−1 f ( n ) (t) dt (1)

Observe that memory effects are introduced through a convolu-

tion integral (the derivative at a given point depends on the whole

dynamic behavior of the variable) included in the various defini-

tions. The Caputo differential operator is linear, so that Eq. (2) ap-

plies for any arbitrary constant α and for arbitrary functions f ( x )

and g ( x ), as long as their integrals exist; further, the operator sat-

isfies the commutative property given by Eq. (3) for any arbitrary

constants α and β ( Diethelm et al., 2005 ): 

 

a D 

α
x ( a 1 f ( x ) + a 2 g ( x ) ) = a 1 

C 
a D 

α
x f ( x ) + a 2 

C 
a D 

α
x g ( x ) (2)

 

0 D 

α
x 

(
C 
0 D 

β
x f ( x ) 

)
= 

C 
0 D 

β
x 

(
C 
0 D 

α
x f ( x ) 

)
= 

C 
0 D 

α+ β
x f ( x ) (3)

Additionally, the Caputo fractional derivative of a constant, c , is

zero: 

 

a D 

α
x ( c ) = 0 (4)

Similarly, the left Riemann–Liouville fractional integral defini-

tion is given by Eq. (5) : 

a I 
α
x f ( x ) = 

1 

�( α) 

∫ x 

a 
( x − t ) 

α−1 f (t) dt (5)

I indicates the fractional integral operator; notice that the su-

perscript C is not included, since this expression is a Riemann-

Liouville definition. Finally, as expected, fractional integration and

fractional derivative operators are inverse operators ( Almeida and

Torres, 2011 ): 

a D 

α
x a I 

α
x f ( x ) = f ( x ) (6)

1.2. Numerical algorithms for the simulation and optimization of 

fractional models 

Several numerical/theoretical tools have been developed for the

simulation and optimization of dynamic systems of fractional dif-

ferential equations. The most relevant works to our approach are

summarized in this section. 

1.2.1. Numerical integration of sets of fractional differential equations 

Literature reports several recent efforts to integrate frac-

tional differential equations by numerical methods; among them,

there are some fundamental approaches for particular problems

( Mendes et al, 2019 ; Moghaddam et al, 2019 ). As a most gen-

eral case, Garrapa (2018) presents an excellent review of some

of the most efficient existing multi-step methods for integrating

fractional differential equations (FDE), and provides Matlab func-

tions to perform numerical simulations through some of such tech-

niques. The author describes both Product Integration (PI) methods

and Fractional Linear Multi-step Methods (FLMMs). The predictor-

corrector method of Diethelm et al. (20 02 , 20 04 , 20 05 ) and

Diethelm (2010) is among the best known PI techniques; on the

other hand, FLMMs are illustrated through various developments

such as the method of Lubich (1986) and the Grunwald–Letnikov

scheme. Besides the numerical strategies, Garrapa (2018) also dis-

cusses the three types of problems involving fractional order op-

erators (Fractional Differential Equations (FDE), Multi-order sys-

tems (MOS) and Linear Multi-Term FDEs) which can be addressed

through multi-step methods. 

The algorithm provided by Diethelm et al. (20 02 , 20 04 , 20 05 )

is one of the most widely used methods for integrating FDE and

has been selected as one of the basis of this work. This method
s an extension of the predictor-corrector method of the Adams-

ashforth-Moulton technique, so that it could be applied to the

ractional case. The algorithm can be applied to the initial value

roblem: 

C 
0 D 

α
t y ( t ) = f ( t , y ( t ) ) 

y ( k ) ( 0 ) = y k 0 , k = 0 , 1 , 2 , . . . , m − 1 

(7)

here the fractional order is α > 0 and m = [ α] ; notice that only

ractional differential equations are considered; y is the dependent

ariable and t is the independent variable. k is related to the order

f the fractional derivative and to the number of initial conditions

or each differential equation. By applying the formula of the rect-

ngular quadrature rule, a predictor step is calculated by Eq. (8) :

 

P ( t n +1 ) = 

α−1 ∑ 

k =0 

y ( 
k ) 

0 

t k n +1 

k ! 
+ 

1 

�( α) 

n ∑ 

j=0 

b j,n +1 f 
(
t j , y 

(
t j 
))

(8)

here 

 j,n +1 = 

h 

α

α

(
( n + 1 − j ) 

α − ( n − j ) 
α
)

(9)

nd h is the integration time step. Then, by using a trapezoidal

uadrature rule, the corrector step is defined as follows: 

 ( t n +1 ) = 

α−1 ∑ 

k =0 

y ( 
k ) 

0 

t k n +1 

k ! 
+ 

h 

α

�( α + 2 ) 
f 
(
t n +1 , y 

P ( t n +1 ) 
)

+ 

h 

α

�( α + 2 ) 

n ∑ 

j=0 

a j,n +1 f 
(
t j , y 

(
t j 
))

(10)

here 

 j,n +1 = ⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

α+1 − ( n − α) ( n + 1 ) 
α
, if j = 0 

( n − j + 2 ) 
α+1 + ( n − j ) 

α+1 − 2 ( n − j + 1 ) 
α+1 

, if 1 ≤ j ≤ n 

1 , if j = n + 1 

(11)

.2.2. Optimizing dynamic systems of fractional differential equations:

olution of fractional optimal control problems 

When a set of fractional differential equations is posed within

n optimization framework, the result is a fractional optimal con-

rol problem. Various numerical as well as theoretical tools have

een developed for optimizing fractional systems ( Wei et al.,

017 ). The classical works by Agrawal (20 02 ; 20 04 ; 20 07 ; 20 08 ;

010 ) present the derivations for the optimality conditions (Euler-

agrange Equations) for such problems, including the variations re-

ulting from the use of different definitions of fractional deriva-

ives. Similar optimality conditions have also been derived by

uo (2013) , Herzallah and Baleanu (2009) , Baleanu and Tru-

illo (2010) , Jelicic and Petrovacki (2009) and Jahanshahi and Tor-

es (2017) . Further, Atanackovic et al. (2017) considered the case of

omplex fractional order derivatives, whereas Caputo and Caputo–

abrizio fractional derivatives have also been included in the prob-

em definition ( Almeida, 2017 ; Nuno and Bastos; 2018 ). The Euler–

agrange equations for a fractional optimal control problem consist

f a two-point boundary value problem involving fractional differ-

ntial equations. Such boundary value problem has to be solved

n order to determine the optimal profiles for the control and

tate variables. Collocation techniques ( Rabiei and Parand, 2019 ) as

ell as a direct solution approach based on the Hamilton-Jacobi-

ellman ( Rackhshan et al., 2018 ) have been reported as suitable

olution approaches. Among the applications of such fractional op-

imality conditions, the work by Ding et al. (2012) proposes a for-

ulation to represent the interaction between the immune system
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nd HIV, and Toledo-Hernandez et al. (2014b) propose a numerical

trategy for the optimization of fractional biological reactive sys-

ems. 

. Modeling and optimization of fractional-ordinary models 

We believe that most of the complex dynamic models that

resent memory effects in some of their components will also

resent a conventional ordinary behavior in any other of their

arts. Therefore, general dynamic systems will most certainly in-

lude a set of differential equations that involves both fractional

s well as ordinary differential equations. Therefore, numerical and

heoretical tools for those combined problems are required. Our

ork then intends to present a generalized framework for the sim-

lation and optimization of dynamic systems including both ordi-

ary and fractional differential equations. When facing those prob-

ems, most of the existing literature proposes a solution approach

ased on a numerical inverse Laplace transform algorithm, which

an be applied for linear systems. As an alternative, this paper

resents an approach that does not require such transformation

nd obtains the solution in the time domain. 

.1. Our approach 

The numerical techniques for fractional differentiation and inte-

rations reduce to the ordinary case when the order used is inte-

er. Fractional integration techniques can then be used for integer

rders. As a consequence, fractional integration could be used as a

eneral case and the same technique could therefore be applied for

he integration of both integer and fractional differential equations.

he problem is, however, that the use of a fractional technique for

he integration of an ordinary equation is not practical; the com-

utational effort rapidly increases unnecessarily (a local ordinary

erivative is estimated through a convolution integral of the whole

ynamic behavior of the variable). 

Therefore, as a first contribution, we present a generalized ver-

ion of the predictor-corrector integration method, which can inte-

rate simultaneously both fractional and ordinary differential equa-

ion in an efficient manner. Such fractional-ordinary integration

echnique is used as a basic tool in the other contributions of this

ork. So, it can then be used along to non-linear correlation tech-

iques for the formulation of fractional-ordinary models in which

ome of the state variables present memory effects. Also, it can be

sed for the simulation of those fractional-ordinary models. Never-

heless, we must emphasize that the contribution of this method

ies only on the decomposition of the equations and on the nu-

erical implementation of the strategy; the conceptual analysis of

his technique and other multi-step methods have already been re-

orted in the literature ( Garrapa, 2018 ). 

Further, there are two other main contributions in this work: 

(1) In the context of fractional modeling, a common approach

sed in compartmental modeling starts with an ordinary model.

nce memory effects are identified, a formal fractionalization

trategy is applied to the ordinary model so that mass balances are

reserved. The strategy results in a system of differential equations

nvolving both ordinary and fractional operators in each equation

linear multi-term FDEs). To simulate or optimize such system, an

nverse Laplace transformation technique can be applied for lin-

ar systems ( Dokumetzidis et al., 2010b ); similarly, a numerical ap-

roximation for the fractional operator can also be given in terms

f the Oustaloup Recursive Approximation (ORA) in the frequency

omain ( Tricaud and Chen, 2010 ) and through the use of artificial

eural networks ( Pakdaman et al., 2017 ). In this work we propose

n alternative approach that uses no transformation. 

After the fractionalization approach (equations have both frac-

ional and ordinary differential operators), we introduce artifi-
ial variables and apply the commutative property for successive

ractional derivation so that the multi-linear FDE system can be

onverted into a set of fractional-ordinary differential equation

SFODE; each equation is either fractional or ordinary). Then, the

odel can be addressed by our generalized approach for either

imulation (generalized numerical integration) or optimization. 

(2) As the main contribution of the work, a theoreti-

al/numerical strategy for approaching fractional-ordinary optimal

ontrol problems (FOOCP) has also been developed. Such strategy

nvolves the use of a generalized version of the Euler–Lagrange op-

imality conditions for a fractional-ordinary system. Such condi-

ions are derived and then resolved by a gradient based method

o obtain the optimal profiles for the state and control variables. 

Two case studies are used in this work. The first one is a com-

artmental model for drug absorption and distribution within the

ody. A second example considers a model for mezcal (an alcoholic

everage made from agave) production (a thermal hydrolysis). Both

xamples have already been simulated and optimized in the liter-

ture by different numerical approaches, so that we can perform a

irect comparison to assess the performance of our approach. 

. Development of theoretical and numerical tools for the 

imulation and optimization of fractional-ordinary models 

This section describes the main numerical/theoretical contri-

utions of this paper. The work presents a theoretical/numerical

pproach to simulate and optimize dynamical systems involving

oth fractional and ordinary differential equations. This is a gen-

ral topic that can be applied to most of the engineering areas, in-

luding chemical engineering. For instance, literature reports show

he application of fractional calculus to rheology ( West et al., 2003 ;

ang and Zhu, 2011 ), process control ( Aguila-Camacho and Duarte-

ermoud, 2017 ; Sopasakis and Sarimveis, 2017 ; Sarafnia et al.,

018 ) and diffusive heat and mass transfer processes ( Zecova and

erpak, 2015 ; Magin, 2004 ). Nevertheless, there are very few re-

orts about fractional calculus in the classical chemical engi-

eering literature ( Flores-Tlacuahuac and Biegler, 2014 ; Toledo-

ernandez et al., 2014a ). The development of the tools provided

ere is expected to contribute in increasing the attention of the

hemical engineering community about this research area. 

Notice that the tools implemented in this work were derived di-

ectly from the algorithms developed independently for fractional

nd ordinary models. In both of the algorithms, numerical integra-

ion and dynamic optimization, the tools and the derivations pro-

ided in the literature for each case were combined into a single

eneral method/technique. The details are as follows. 

Many other theoretical issues are significant for the simulation

nd optimization of fractional dynamic problems, such as the sta-

ility of the system. Those issues, however, are out of the scope of

his work. For an interesting analysis and the description of the-

retical developments on the issue of stability, see the work of

i et al. (2009) ; the authors describe the Lyapunov direct method

or fractional systems and the Mittag–Leffler stability theory. 

.1. Numerical integration of a set of fractional-ordinary differential 

quations (SFODE) 

The generalized version of the numerical integration algorithm,

t each time step, includes the estimation of the time history for

hose state variables presenting memory effects as well as the con-

entional estimation for those state variables presenting an ordi-

ary behavior. To simplify the presentation of the algorithm, let x

e the vector of state variables of a fractional-ordinary dynamical

ystem. Such vector is partitioned into two sub-vectors: x 1 is the

ector of variables having an ordinary behavior and x 2 is the vec-

or of variables presenting memory effects (fractional behavior). x 
1 
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H  
is an n o dimensional vector and x 2 is an n f dimensional vector. The

fractional-ordinary initial value problem is then given by: 

dx 1 k 
dt 

= G k ( x 1 , x 2 , t ) k = 1 , 2 , . . . , n o 

x 1 ( 0 ) = x 1 0 

(12)

C 
0 D 

αl 

t x 2 l = F l ( x 1 , x 2 , t ) l = 1 , 2 , . . . , n f 

x 2 ( 0 ) = x 2 0 
(13)

where the indexes are used to indicate the k th ordinary state vari-

able and the l th fractional state variable with a derivative of order

αl . In Eq. (13) , we are assuming that αl ∈ [0, 1]. G and F repre-

sent functions of both the state variables and time. As in the frac-

tional and ordinary cases, for the n + 1 -th point in time (where n = 0

is the initial condition), the Fractional-Ordinary Predictor–Corrector

(FOPC) method involves a predictor step: 

x 1 k 
P ( t n +1 ) = x 1 k ( t n ) + hG k ( t n , x 1 ( t n ) , x 2 ( t n ) ) k = 1 , 2 , . . . , n o (14)

x 2 l 
P ( t n +1 ) = x 2 l 0 

+ 

1 

�( αl ) 

n ∑ 

j=0 

b j,n +1 ,l F l 
(
t j , x 1 

(
t j 
)
, x 2 

(
t j 
))

l = 1 , 2 , . . . , n f 

(15)

where b j,n +1 ,l is given by Eq. (9) for the l th fractional state variable,

and a corrector step: 

x 1 k ( t n +1 ) = x 1 k ( t n ) + 

h 

2 

[ G k ( t n , x 1 ( t n ) , x 2 ( t n ) ) 

+ G k 

(
t n +1 , x 1 

P ( t n +1 ) , x 2 
P ( t n +1 ) 

)]
(16)

x 2 l ( t n +1 ) = x 2 l 0 
+ 

h 

αl 

�( αl + 2 ) 
F l 
(
t n +1 , x 1 

P ( t n +1 ) , x 2 
P ( t n +1 ) 

)
+ 

h 

αl 

�( αl + 2 ) 

n ∑ 

j=0 

a j,n +1 ,l F l 
(
t j , x 1 

(
t j 
)
, x 2 

(
t j 
))(17)

where a j,n +1 ,l is given by Eq. (11) for the l th fractional state vari-

able. Eqs. (14) and (16) are simple expressions for ordinary integra-

tion and could be replaced by more accurate approaches, as those

provided by the Runge-Kutta method. This algorithm has been im-

plemented as a user defined function within the Matlab® environ-

ment. 

3.2. Euler Lagrange equations (optimality conditions) for a 

fractional-ordinary optimal control problem (FOOCP) 

In general, there are two main approaches to address optimal

control problems: direct and indirect methods. In direct transcrip-

tion methods, both the control and the state variables are dis-

cretized and then NLP techniques are used to optimize the system

( Andrés-Martínez et al., 2019 ). On the other hand, indirect methods

focus on deriving the optimality conditions of the problem, and ad-

ditional numerical techniques are then required to solve the result-

ing two-point boundary value problem. Srinivasan et al. (2003) and

Andrés-Martínez et al. (2019) provide a comparison between the

methods for the ordinary case. 

This paper studies the indirect method, based on the derivation

of the optimality conditions. The derivation of the Euler-Lagrange

equations for the fractional-ordinary case follows the same general

procedure and uses the same concepts as those applied indepen-

dently to the fractional case ( Agrawal, 2010 ) and to the well known

ordinary case. We present here only the main steps of our deriva-

tions for the combined problem. Three different forms of the ob-

jective function are considered in an FOOCP: Bolza, Lagrange and
ayer forms ( Stengel, 1994 ). In the following derivation, an objec-

ive function of Bolza form is assumed, since it is the most general

ase: 

 ( u ) = ϕ 

(
x 1 

(
t f 

)
, x 2 

(
t f 

)
, t f 

)
+ 

∫ tf 

0 

L ( x 1 ( t ) , x 2 ( t ) , u ( t ) , t ) dt (18)

As before, x 1 represents the vector of variables that show first

rder dynamics; x 2 is used to indicate those state variables de-

cribed by fractional order dynamics(0 < α < 1). J ( u ) represents

he objective function, which consists of two parts; the first part

 ϕ) is a scalar, continuously differentiable, function dependent on

he state variables at the final time, t f . The second part is an inte-

ral term of the function ( L ) that depends on the state and control

ariables, u ( t ), along the whole time interval; L is also assumed

o be continuously differentiable. Finally, J ( u ) should be defined so

hat the optimal control problem is bounded and feasible. 

The constraints of the FOOCP include bounds to the control

ariables, u min ≤ u ( t ) ≤ u max , the set of first order differential equa-

ions: 

dx 1 
dt 

= G ( x 1 , x 2 , u, t ) 

x 1 ( 0 ) = x 1 , 0 

(19)

nd the set of fractional order differential equations: 

C 
0 D 

α
t x 2 = F ( x 1 , x 2 , u, t ) 

x 2 ( 0 ) = x 2 , 0 
(20)

The initial conditions for both of the sets of state variables are

nown. G and F are functions of time as well as the state variables.

or simplicity in the representation and in the derivations, it is as-

umed here that all of the fractional differential equations have the

ame fractional order, α. From the numerical point of view, the

ractional orders can be different for each of the fractional equa-

ions, since our approach is not limited in that sense. However,

e should notice that, at the current state, our approach does not

nclude any particular consideration to address noncommensurate

ystems. Therefore, special care must be taken when the state vec-

ors contain elements with different physical units. 

For a fractional-only optimal control problem, Agrawal (2004 ,

008 ) provided the optimality conditions when the fractional

erivatives assume either the Riemann-Liouville or the Caputo def-

nitions and when the objective function is either in Lagrangian or

inear Mayer form ( Stengel, 1994 ). 

In this paper, our following derivation integrates the works of

grawal (20 04 , 20 08 ) for fractional equations and the conventional

ariational calculus approach for an ordinary optimal control prob-

em. 

As the first step of the derivation, Eq. (18) is reformulated by

ncluding the Lagrange multipliers, λ: 

J ( u ) = ϕ 

(
x 1 

(
t f 

)
, x 2 

(
t f 

)
, t f 

)
+ 

∫ tf 

0 

L ( x 1 ( t ) , x 2 ( t ) , u ( t ) , t ) dt 

+ 

∫ tf 

0 

λT 
1 

(
G ( x 1 ( t ) , x 2 ( t ) , u ( t ) , t ) − dx 1 

dt 

)
dt 

+ 

∫ tf 

0 

λT 
2 

(
F ( x 1 ( t ) , x 2 ( t ) , u ( t ) , t ) −C 

0 D 

α
t x 2 

)
dt 

(21

As it was done with the vector of state variables, the vector or

ultipliers (also known as adjoint variables) is partitioned too. The

ultipliers for the ordinary differential equations are represented

s λ1 , whereas λ2 represents the vector of multipliers for the frac-

ional differential equations. 

By defining a fractional-ordinary Hamiltonian as: 

 

[
x 1 ( t ) , x 2 ( t ) , λ1 ( t ) , λ2 ( t ) , u ( t ) , t 

]
= L + λT 

1 G + λT 
2 F (22)
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Eq. (21) can then be reformulated in terms of that function as

ollows: 

J ( u ) = ϕ 

(
x 1 

(
t f 

)
, x 2 

(
t f 

)
, t f 

)
+ 

∫ tf 

0 

[
H 

(
x 1 ( t ) , x 2 ( t ) , λ1 ( t ) , λ2 ( t ) , u ( t ) , t 

)
− λT 

1 

dx 1 
dt 

− λT 
2 

C 
0 D 

α
t x 2 

]
dt 

(23) 

Variational calculus is now applied to Eq. (23) . The details of

he derivation are provided in the supplementary information file.

he results for the necessary optimality conditions are: 

dλ1 

dt 
= 

∂H 

∂x 1 
= 

∂L 

∂x 1 
+ λT 

1 

∂G 

∂x 1 
+ λT 

2 

∂F 

∂x 1 
(24) 

 

D 

α
t f 
λ2 = 

∂H 

∂x 2 
= 

∂L 

∂x 2 
+ λT 

1 

∂G 

∂x 2 
+ λT 

2 

∂F 

∂x 2 
(25) 

1 

(
t f 

)
= 

∂ϕ 

∂x 1 

(
t f 

)
(26) 

 

I 1 −α
t f 

λ2 

(
t f 

)
= 

∂ϕ 

∂x 2 

(
t f 

)
(27) 

∂H 

∂u 

= 

∂L 

∂u 

+ λT 
1 

∂G 

∂u 

+ λT 
2 

∂F 

∂u 

= 0 (28) 

Eqs. (19) , (20) and (24) through (28) represent the necessary

ptimality conditions for a generalized FOOCP. Equation (26) and

27) provide the end conditions for the ordinary and fractional

ultipliers. Eq. (28) allows the determination of the optimal pro-

le for the control variable (expression commonly known as the

ontrol law). The result is a two-point boundary value problem.

he expressions for the end conditions can be simpler; for in-

tance, when the objective function is in Lagrangian form (that is,

o scalar function ϕ appears it the objective function). In that case,

ince the terminal conditions for the multipliers are given in terms

f the derivatives of ϕ with respect to the state variables, the end

onditions for the multipliers are equal to zero. 

Table 1 provides the fractional-ordinary optimality conditions

erived in this work for the various forms of the objective function

f the FOOCP. The optimality conditions are solved by an iterative

rocedure based on the gradient method which is explained in the

ollowing section. 

.3. Solving the optimality conditions of a FOOCP: a gradient method 

ased approach 

The numerical method for solving the optimality conditions

sed in this work is based on Poyntriagin Maximum Principle,

hich we apply by using the gradient method. We have modified

he conventional gradient method, however, to consider the pres-

nce of fractional differential equations and fractional end condi-

ions. The following is a summary of the algorithmic steps that we

ropose in our optimization strategy: 

Step 1. Propose an initial feasible guess for the control variable

rofile u (t) = u 0 (t) . 

Step 2. Use the fractional-ordinary predictor-corrector technique

o perform forward integration of the state equations (ordinary and

ractional; Eqs. (19) and (20) ) by using the known initial condi-

ions. Time profiles are obtained for x 1 and x 2 . 

Step 3. Use the end conditions of the Lagrange multipliers λ1 

nd λ2 and the fractional-ordinary predictor-corrector technique to

erform backward integration of Eqs. (24) and (25) to obtain the

ime profiles of those multipliers. 
Step 4. Update the control variable profile. Using a gradient

ethod-based approach, the new estimation is given by the fol-

owing expression: 

 k +1 = u k − ε k 

[
∂H 

∂u 

]
k 

here ɛ k is a scalar chosen for each particular problem; its def-

nition generally implies trial and error. If the value is too small,

he number of iterations needed grows significantly, but if it is

oo large, convergence might not be achieved. The derivative of the

ractional ordinary Hamiltonian with respect to the control variable

s given by Eq. (28) . 

Step 5. The algorithm returns to Step 2 and continues un-

il the convergence criterion is met. The criterion might be in

erms of sufficiently small values of either [ ∂H 
∂u 

] k or the difference

( u k +1 − u k . ) 

If the objective function is in either linear Mayer or Bolza forms

 i. e. ϕ � = 0), a numerical approximation to the end condition of

he fractional multipliers, λ2 , is needed. The description of an algo-

ithm to estimate that end condition is given in the supplementary

nformation file accompanying this paper. 

In summary, this section has described the three main nu-

erical/theoretical tools used in our work. The FOPC method of

ection 3.1 can be applied to simulate a SOFDE, but it is also a fun-

amental tool for the non-linear correlation of experimental data

o determine fractional orders of the fractional differential equa-

ions and, as seen in Section 3.3 , to support the algorithm for opti-

ization. The generalized optimality conditions of Section 3.2 and

he gradient method of Section 3.3 are together the main basis for

ur optimization approach. An additional contribution is given in

he next section, as we suggest an approach to reformulate frac-

ionalized dynamic systems. 

. Fractionalization of ordinary models and our reformulation 

pproach 

In compartmental modeling, as the name suggests, a complex

ystem under analysis is divided into compartments. In particular,

his modeling approach provides a framework to study the dynam-

cs of materials flow (drugs, nutrients, etc.) among different com-

artments. Each compartment represents a group of components

f the system with similar characteristics; a compartment can be

ither a conceptual or a physical region. 

.1. Fractionalization of an ordinary compartmental model 

Dokoumetzidis et al. (2010a) explain that incorporating frac-

ional behavior in some compartments of an ordinary multi-

ompartmental model is not as simple as just assigning a frac-

ional order to the derivatives in the left-hand side of the ordinary

ifferential equations of the model; the authors show that such

ractice may produce inconsistent systems which violate mass bal-

nces. Therefore, they propose a formal fractionalization strategy

o that a consistent fractional model can be derived from the or-

inary model. Such strategy is applied to the case studies of this

ork. 

As a brief summary, the fractionalization approach involves

please see Dokoumetzidis et al., 2010b ): 

i) Integrating the ordinary differential equations to achieve a set

of integral equations. 

ii) Modifying the kernel of the integral terms to appropriate func-

tions in power-law form, so that the integral terms become

Riemann–Liouville fractional integrals. 

ii) Taking the first derivative to each of the resulting equa-

tion so that the Riemann–Liouville fractional integrals become

Riemann–Liouville fractional derivatives. 
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Table 1 

Necessary optimality condition ordinary-fractional optimal control problems. 

Objective function 

Euler-Lagrange optimality 

conditions 

J(u ) = ϕ(x 1 (t f ) , x 2 (t f ) , t f ) + ∫ tf 

0 
L ( x 1 ( t) , x 2 ( t) , u ( t) , t) dt 

−dλ1 

dt 
= 

∂H 

∂x 1 
= 

∂L 
∂x 1 

+ λT 
1 

∂G 

∂x 1 
+ λT 

2 
∂F 
∂x 1 

λ1 ( t f ) = 

∂ϕ 

∂x 1 
( t f ) 

t D 

α
t f 
λ2 = 

∂H 

∂x 2 
= 

∂L 
∂x 2 

+ λT 
1 

∂G 

∂x 2 
+ λT 

2 
∂F 
∂x 2 

t I 
1 −α
t f 

λ2 ( t f ) = 

∂ϕ 

∂x 2 
( t f ) 

∂H 

∂u 
= 

∂L 
∂u 

+ λT 
1 

∂G 

∂u 
+ λT 

2 
∂F 
∂u 

= 0 

J(u ) = ϕ(x 1 (t f ) , x 2 (t f ) , t f ) −dλ1 

dt 
= 

∂H 

∂x 1 
= λT 

1 
∂G 

∂x 1 
+ λT 

2 
∂F 
∂x 1 

λ1 ( t f ) = 

∂ϕ 

∂x 1 
( t f ) 

t D 

α
t f 
λ2 = 

∂H 

∂x 2 
= λT 

1 
∂G 

∂x 2 
+ λT 

2 
∂F 
∂x 2 

t I 
1 −α
t f 

λ2 ( t f ) = 

∂ϕ 

∂x 2 
( t f ) 

∂H 

∂u 
= λT 

1 
∂G 

∂u 
+ λT 

2 
∂F 
∂u 

= 0 

J(u ) = 

∫ tf 

0 
L (x 1 (t) , x 2 (t ) , u (t ) , t ) dt −dλ1 

dt 
= 

∂H 

∂x 1 
= 

∂L 
∂x 1 

+ λT 
1 

∂G 

∂x 1 
+ λT 

2 
∂F 
∂x 1 

C 
t D 

α
t f 
λ2 = 

∂H 

∂x 2 
= 

∂L 
∂x 2 

+ λT 
1 

∂G 

∂x 2 
+ λT 

2 
∂F 
∂x 2 

λ1 (t f ) = λ2 (t f ) = 0 

∂H 

∂u 
= 

∂L 
∂u 

+ λT 
1 

∂G 

∂u 
+ λT 

2 
∂F 
∂u 

= 0 

(i  
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v) Rewriting the Riemann–Liouville fractional derivatives as the

equivalent Caputo fractional derivatives. 

Once the fractionalization approach is applied to an ordinary

model, each of the equations of the resulting system involves both

ordinary and fractional derivative operators, so that the system can

be considered as a linear multi-term set of FDEs. In the compart-

mental models used in this work, the units of the transfer rates

among compartments in the fractionalized equations are consis-

tent. 

In the work of Dokoumetzidis et al. (2010b) , given the form

of the equations, the authors suggest rewriting the system in the

Laplace domain and then using a numerical inverse Laplace trans-

form algorithm to simulate the system. The approach proposed in

this paper does not apply such transformation. Instead, a reformu-

lation of the linear multi-term FDEs allows the use of the numeri-

cal tools developed in this work. The reformulation is described in

the following subsection. 

4.2. Proposed reformulation of a fractional model 

The main step of the reformulation approach involves the in-

corporation of artificial variables to represent the fractional deriva-

tives of the original state variables. Consider a simple set of liner

multi-term FDEs of the form (0 < α < 1): 

d x 1 1 
dt 

+ λ1 
C 
0 D 

1 −α
t x 2 1 = f 1 ( x , t ) (29)

d x 2 1 
dt 

+ λ2 
C 
0 D 

1 −α
t x 2 1 = f 2 ( x , t ) (30)

That kind of equations is commonly found when the fractional-

ization approach of the previous subsection is applied to an or-

dinary model. The first idea is introducing a new variable for
ach fractional term involved in the equations. Hence, by defining

 2 2 (t) = 

C 
0 
D 

1 −α
t x 2 1 , where x 2 2 (0) = 0 , Eqs. (29) and (30) are refor-

ulated as a fractional-ordinary system: 

 

 

D 

1 −α
t x 2 1 = x 2 2 

d x 1 1 
dt 

= f 1 ( x , t ) − λ1 x 2 2 

d x 2 1 
dt 

= f 2 ( x , t ) − λ2 x 2 2 

As a second step, the reformulation requires an expression to

stimate the time dependent behavior of the artificial variable x 2 2 .

hat is obtained by using both the original state equation of vari-

ble x 2 1 and the commutative property of fractional derivation

iven by Eq. (3) . Recall that, in Eq. (3) , α and β are arbitrary con-

tants; also, when the fractional order of a fractional derivative is

nteger, the fractional derivative reduces to an ordinary derivative.

he outcome of this step is as follows: 

d x 2 1 
dt 

= 

C 
0 D 

1 
t x 2 1 = 

C 
0 D 

α+ ( 1 −α) 
t x 2 1 = 

C 
0 D 

α
t 

(
C 
0 D 

1 −α
t x 2 1 

)
= 

C 
0 D 

α
t x 2 2 

Therefore, the system of equations becomes: 

 

 

D 

1 −α
t x 2 1 = x 2 2 (31)

d x 1 1 
dt 

= f 1 ( x , t ) − λ1 x 2 2 (32)

 

 

D 

α
t x 2 2 = f 2 ( x , t ) − λ2 x 2 2 (33)

The significance of this reformulation is that the set of multi-

erm FDEs becomes a SFODE, which can be approached by using
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Fig. 1. Compartmental model for Amiodarone distribution. 
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t  
he tool proposed in this work. Garrapa (2018) discusses and al-

ernative approach to solve multi-term FDES through a numerical

lgorithm to integrate FDEs. 

. Case studies 

We selected two case studies whose models, simulations and

ptimal results were previously reported in the literature. Recent

esearch efforts ( Copot et al, 2017a ; Copot et al, 2017b ; Ionescu and

elly, 2017 ) shows that the modeling of drug absorption, distribu-

ion and elimination within the body has to consider anomalous

henomena caused by drug trapping and tissue heterogeneity. The

odels of the case studies consider some of those issues but do

ot implement some of that current knowledge about the mod-

ling of biological phenomena through fractional calculus. Never-

heless, we are keeping the models as they were reported for two

easons. Firstly, their mathematical nature results (through the re-

ormulation that we propose) in a fractional-ordinary model (and

ractional-ordinary optimal control if a performance index is in-

luded), which is the main focus of this work; secondly, they could

elp us assess the performance of our methods by direct compari-

on. The description of the models and the reformulation as SFODE

re provided here. 

.1. A Compartmental model in pharmacokinetics: administration and

bsorption of amiodarone 

The first case-study involves the administration and distribu-

ion of the drug amiodarone within the body. It is a simple ex-

mple, but it involves all of the elements needed to clearly illus-

rate our approach. Amiodarone is a drug used to prevent and treat

arious types of irregular heartbeats; it has serious side effects in-

lude lung toxicity, as well as liver, vision and thyroid problems.

 pharmacokinetics compartmental model has been provided by

okoumetzidis et al. (2010b) . The formulation suggested by such

uthors is derived as follows. 

.1.1. Ordinary model for the amiodarone case-study 

Fig. 1 provides a schematic representation of a compart-

ental model for Amiodarone pharmacokinetics proposed by

okoumetzidis et al. (2010b) . The system considers a central com-

artment to represent perfused tissues and general circulation as

ell as a peripheral compartment used for representing deeper

issues. The processes of interest include mass transfer from the

entral to the peripheral compartment, mass elimination from the

entral compartment and a mass flux from the peripheral to the

entral compartment. 

Assuming first order dynamics for all of the mass transfer pro-

esses, mass balances for each compartment result in: 

d A 1 = −k 12 A 1 (t) + k 21 A 2 (t) − k 10 A 1 (t) + u (t) (34)

dt 
d A 2 

dt 
= k 12 A 1 (t) − k 21 A 2 (t) (35) 

here A 1 ( t ) and A 2 ( t ) represent the masses of the drug in each

ompartment and the various k ij represent the mass transfer rates

etween the compartments or the elimination rate. u ( t ) is the in-

ut rate from the drug to the central compartment. 

.1.2. Fractionalization of the model for the amiodarone case-study 

Applying the fractionalization strategy of Section 4.1 to

qs. (34) and (35) , the expressions are reformulated as: 

d A 1 

dt 
= −( k 12 + k 10 ) A 1 + k 21 

C 
0 D 

1 −α
t A 2 + u (t) (36)

d A 2 

dt 
= k 12 A 1 − k 21 

C 
0 D 

1 −α
t A 2 (37) 

The fractionalization assumes that the mass transfer from the

eripheral compartment (deeper tissues) to the central compart-

ent (general circulation) follows anomalous fractional behavior

the corresponding rate constant is k 21 ). Notice that - Eqs. (36) –(37)

nvolve both ordinary and fractional derivative operators. The units

f the variables and parameters are as follows: units of mass for A 1 

nd A 2 ; tim e −α for k 21 ; time −1 for k 12 and k 10 ; mass/time for u . Fol-

owing the discussions presented by Dokoumetzidis et al. (2010b) ,

he units of the rate constant k 21 ( tim e −α) are consistent with the

lower kinetics arising as a result of the (non-exponential) power-

aw nature of the fractional derivative in Eq. (36) . This slower ki-

etics will eventually lead to drug accumulation at long adminis-

ration times; such a behavior is consistent with drug trapping in

iological tissues. 

.1.3. Proposed reformulation of the fractional model for the 

miodarone case-study 

When the reformulation approach of Section 4.2 is applied to

qs. (36) and (37) , a new artificial variable B ( t ) is defined as B (t) =
 

 

D 

1 −α
t A 2 , where B (0) = 0 . As a consequence of the definition, units

f B are mass/time 1- α . 

The result is: 

 

 

D 

1 −α
t A 2 = B (38) 

d A 1 

dt 
= −( k 12 + k 10 ) A 1 + k 21 B + u (t) (39)

d A 2 

dt 
= k 12 A 1 − k 21 B (40) 

Eq. (38) provides the dynamics of A 2 and Eq. (39) the dynamics

f A 1 . The dynamics of B ( t ) is obtained by applying Eq. (3) to the

erivative of Eq. (40) : 

d A 2 

dt 
= 

C 
0 D 

1 
t A 2 = 

C 
0 D 

α+ ( 1 −α) 
t A 2 = 

C 
0 D 

α
t 

(
C 
0 D 

1 −α
t A 2 

)
= 

C 
0 D 

α
t B 

Given the previous identity, it is important to notice that units

f both 

d A 2 
dt 

and 

C 
0 
D 

α
t B are mass/time .The final result is the SFODE

iven by Eqs. (41) through (43) . 

 

 

D 

1 −α
t A 2 = B (41) 

d A 1 

dt 
= −( k 12 + k 10 ) A 1 + k 21 B + u (t) (42)

 

 

D 

α
t B = k 12 A 1 − k 21 B (43) 

The equations of the system are no longer multi-term FDEs.

nstead, the system includes now one ordinary differential equa-

ion and two fractional differential equations and, therefore, it
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Fig. 2. Amiodarone mass in the central (A1) and peripheral (A2) compartments after an initial dose of 0.1 ng. 
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t  
can be integrated directly with the FOPC method explained in

Section 3.1 . Fig. 2 shows the profiles of amiodarone during seven

days in the central and peripheral compartments obtained by

the numerical integration. The model parameters suggested by

Dokumetzidis et al. (2010b) are used in this work; the values are

α = 0.5870, k 10 = 1.4913 day −1 , k 12 = 2.9522 day −1 and k 21 =
0.4854 day −α . Amiodarone accumulates in deep tissues; in fact,

if the simulation of the model continues further in time, it can

actually show that, after thirty days of the initial dose of 0.1 ng,

its amount in the blood plasma is basically zero, but a significant

amount (about 0.024 ng) can still be found in the peripheral com-

partment. The fractional ordinary model will be further studied to

evaluate our approach to solve FOOCPs in Section 6 . 

5.2. A thermal hydrolysis: production of mezcal from agave 

The ordinary model of this example has been taken from the

work of Garcia-Soto et al (2011) . The fractional calculus approach

was reported by Toledo-Hernandez et al. (2014a) . 

As pointed out by Toledo-Hernandez et al. (2014a) , the ordinary

differential equations of the ordinary model are quite simple and

fractional calculus might not represent a significant modeling ad-

vantage in this case. However, those authors use that example to

explain the fractionalization technique described in Section 4.1 . We

also use this case-study since, besides the fractionalization strat-

egy, literature provides optimization (optimal control) results ob-

tained by an iterative approach based on the discretization of the

time intervals. 

This case represents the thermal treatment of fructans (from

Agave salmiana ) as the first step in mezcal production given by the

following reaction ( Garcia-Soto et al, 2011 ): 

F ructans 
k h → 

[ 

F ructose 
Glucose 

other 

] 

Reducing Sugars 

k d → 

[ 

F ur f ural 
5 − ( hydroxymethyl ) f ur f ural 

other 

] 

F urans 

The fructans (P) are hydrolyzed into reducing sugars; the sug-

ars further undergo partial degradation to form furans (D). The
ate constants of hydrolysis and degradation are k h and k d , respec-

ively. The ordinary and the fractionalized models were reported

y Toledo-Hernandez et al. (2014a) and are provided in the sup-

lementary information file which accompanies this manuscript. 

.2.1. Reformulation as a SFODE 

In this case, the reformulation of the fractionalized model re-

uires the definition of two artificial variables (two new fractional

ifferential equations). The resulting SFODE for this example in-

ludes four fractional differential equations and one ordinary dif-

erential equation. 

 

 

D 

1 −α1 

t P (t) = X (44)

 

 

D 

1 −α2 

t M(t) = Y (45)

 

 

D 

α1 

t X = −k h 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]
(46)

 

 

D 

α2 

t Y = k h 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]
− k d 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]
(47)

dD 

dt 
= k d 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]
(48)

Initial conditions are given by P (0) = P 0 , M(0) = M 0 , D (0) = D 0 ,

(0) = 0 and Y (0) = 0 . Experimental data and the time profiles

btained in this work are shown in Fig. 3 ; the numerical integra-

ion of Eqs. (44) through (48) was done by using our implemen-

ation of the FOPC method described before. Results are basically

he same as those reported by Toledo-Hernandez et al. (2014a) that

sed Laplace transformation for the simulations. Table 2 shows the

odel parameters used for both the simulation of Fig. 3 and the

ptimization problem described in the following section. 

. Optimization of the SFODE: formulating and solving the 

OOCP 

To illustrate the use of the optimality conditions and the op-

imization strategy proposed in Section 3 , the fractional ordinary
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method. 
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Fig. 4. Optimal infusion rate of amiodarone. 

Table 2 

Model parameter for the thermal hydrolysis frac- 

tional model. 

Temperature = 96 °C Temperature = 106 °C 

α1 = 0 . 9738 α1 = 0 . 9738 

α2 = 0 . 7448 α2 = 0 . 7448 

k h = 0 . 0552 h −α1 k h = 0 . 1729 h −α1 

k d = 5 . 0789 x 10 −4 h −α2 k d = 0 . 0014 h −α2 
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models formulated and simulated in the previous section are now

modified to conform fractional-ordinary optimal control problems;

the derivations and optimization results involved in each of the ex-

amples are described next. 

6.1. Administration and absorption of amiodarone 

In the first example, the objective is to achieve and main-

tain the necessary amount of amiodarone in compartment 2

(deeper tissues), A 2 , and, at the same time, to avoid reaching

the amount at which the drug becomes toxic to the organism.

Herceg et al. (2017) address a similar problem, considering specific

discrete doses every half a day for seven days. The corresponding

FOOCP used in this work is given by Eqs. (49) through (54) . 

Minimize J = 

∫ t f 

0 
( A 2 (t) − δ) 

2 
dt (49)

Subject to the SOFDE derived previously and the bounds of the

variables: 

 

0 D 

1 −α
t A 2 = B (50)

d A 1 

dt 
= −( k 12 + k 10 ) A 1 + k 21 B + u (t) (51)

 

0 D 

α
t B = k 12 A 1 − k 21 B (52)

A 1 , A 2 ≤ θ (53)

0 ≤ u ≤ u max (54)

where δ is the target amount of A 2 ; θ is the toxicity bound for the

amiodarone and u max is the maximum allowable dose. Initial con-

ditions are A 1 (0) = A 2 (0) = B (0) = 0 . The goal is to find the opti-

mal values of the drug infusion rates represented by u ( t ). 
.1.1. Euler Lagrange optimality conditions 

From the previous SFODE, the fractional-ordinary Hamiltonian

s defined as: 

 = ( A 2 − δ) 
2 + B λ1 + ( −( k 12 + k 10 ) A 1 + k 21 B + u (t) ) λ2 

+ ( k 12 A 1 − k 21 B ) λ3 

The optimality conditions derived from the Hamiltonian are: 

 

 

D 

1 −α
t f 

λ1 = 

∂H 

∂ A 2 

= 2 ( A 2 − δ) (55)

d λ2 

dt 
= 

∂H 

∂ A 1 

= −( k 12 + k 10 ) λ2 + k 12 λ3 (56)

 

 

D 

α
t f 
λ3 = 

∂H 

∂B 

= λ1 + k 21 λ2 − k 21 λ3 (57)

The objective function is in Lagrangian form, so that λ1 ( t f ) =
2 ( t f ) = λ3 ( t f ) = 0 and the Caputo definitions of fractional deriva-

ives are used directly. Finally, the control law is: 

∂H 

∂u 

= λ2 = 0 

The two-point boundary value problem is defined then by -

 Eqs. (50) –( 54 ) and -( Eqs. (55) –( 57 ) as well as by the initial con-

itions of the state variables, the end conditions of the multipliers

nd the control law. Notice that the units of all of the terms of

he Hamiltonian as well as those of Eqs. (55) –(57) are consistent.

ecall that the units of the original variables and parameters are:

nits of mass for A 1 and A 2 ; tim e −α for k 21 ; time −1 for k 12 and k 10 ;

 mass/time) for u ; units of B are ( mass/time 1- α). Further, the units

f the new adjoint variables are ( mass time 1- α) for λ1 , ( mass time )

or λ2 , and ( mass time ) for λ3 . In that way, the units of all of the

erms of the Hamiltonian are ( mass 2 ); the units of all of the terms

f Eqs. (55) and (56) are units of ( mass ); finally, the units of all of

he terms of Eq. (57) are ( mass time 1- α). 

.1.2. Solving the Euler Lagrange optimality conditions with the 

radient method 

The system can be solved by using the gradient method

roposed in this paper. The values used for the modeling

arameters are δ = 0 . 4 ng and θ = 0 . 5 ng; further, four cases

f the maximum allowable dose were considered, u max =
 1 . 0 , 0 . 75 , 0 . 5 , 0 . 25 ] ng/day . Fig. 4 , Fig. 5 and Fig. 6 show the op-

imal infusion rates and the amounts of amiodarone in both of the
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Fig. 5. Optimal profile of amiodarone in the central compartment. 

c  

t  

p  

t  

i  

r  

o  

d  

m  

m  

r  

i

6

t

 

c  

l  

v  

d

 

d  

�  

t  

p

 

u  

a  

a

d

 

b  

n  

p  

A  

t  

t  

t

 

r  

p  

d  

h  

i  

m  

e  

l  

t  

t  

i  

a  

t  

o  

i  

t  

a

 ∫
 

a  

f  

t  

a

 

l  

d  

e  

a  

i  

d  

t  

r  

i  

2  

o  

�  

t  

�  

d  

c

6

 

f  

i  
ompartments. The results for the control variable represent a con-

inuous administration route for the amiodarone which, in princi-

le, would require a continuous infusion device that can provide

he appropriate variable amounts of drug during the entire time

nterval. The optimal profiles present a similar trend. The infusion

ate starts at the maximum allowable dose until the target amount

f drug in the tissues is achieved. Then, the infusion rate rapidly

ecreases and is kept at lower values, but still maintaining the

ass of amiodarone at the appropriate target level δ = 0 . 4 ng. The

aximum allowable dose is related to the time period required to

each the target; as u max increases, the time needed decreases. That

s also consistent with a decrease in the objective function. 

.1.3. Practical considerations for the administration of amiodarone: 

reatment based on discrete doses 

For practical purposes in this particular example, notice that a

ontinuous administration of the drug cannot be undertaken for

ong periods of time. In such case, it is generally preferred to pro-

ide specific doses of the drug in particular discrete points in time

uring the treatment. That issue will be addressed in this section. 

In such case, the goal is to determine the optimal amount of

rug to be administrated during finite periods of time of length

t within the whole time interval. Let us define n + 1 time points

 i ( i = 0 , 1 , 2 , . . . , n ) t i in the time interval [ t 0 , t f ], where the time

eriods are defined as �t = t i +1 − t i . 

As the first step in the approach, the continuous optimal profile,

 

∗( t ), as the one estimated in the previous section, is integrated

long each of the time periods; the idea is to calculate the total

mount of amiodarone to be administered at each period, d i : 

 i = 

∫ t i +1 

t i 

u 

∗(t) dt 

An additional assumption in this section is that the total dose to

e administrated in each period, d i , will be provided at the begin-

ing of the period, in t i . Notice that the doses d i are inputs to com-

artment 1 and affect directly the ordinary dynamics of variable

 1 ; nevertheless, the values of A 1 will indirectly affect the frac-

ional dynamics of A 2 because of the coupling among the differen-

ial equations. Also notice that the estimation of d i must consider

hat the behavior of the system variables is fractional. 

Our study was conducted for three different administration

outes, involving a time interval of seven days and constant time

eriods of �t equal to 6, 12 and 24 h; that is �t = 0 . 25 , 0 . 5 and 1

ays. The results for time periods of 12 h are presented in detail
ere, since the work by Herceg et al. (2017) consider such admin-

stration route; the rest of results are provided as supplementary

aterial. Table 3 presents the doses administrated every 12 h for

ach of the four cases of Figs. 4 –6 (four values of the maximum al-

owable infusion rate u max ). The discrete doses of Table 3 were es-

imated by using the optimal infusion rates of Fig. 4 . The profiles of

he amount of amiodarone in each of the compartments are shown

n Figs. 7 and 8 . Notice that the target value in compartment 2 is

chieved from day 1 with small variations during the seven days of

he administration of the drug. As a validation of the results, anal-

gous profiles were obtained by Herceg et al. (2017) for an admin-

stration route which is similar as the ones defined in this work;

heir numerical approach is quite different though, since they use

 rational approximation to the fractional derivatives. 

Table 4 shows the value of the objective function J =
t f 
 

0 

( A 2 (t) − δ) 2 dt obtained for the different values of the maximum

llowable infusion rate. The three administration routes are shown

or comparison purposes. For �τ = 1 day and u max > 0.5, occurs

hat d 0 > θ and A 1 (0) > θ ; therefore, no feasible solutions are

chieved in those cases. 

As a final note, it is important to emphasize that there is no

imitation on the length of the time interval used for discrete

osage; the intervals can be constant, as in the previous results, or

stimated otherwise so that the administration route considers any

nomalous effect, such as the dynamics of molecular binding dur-

ng the drug diffusion. Ionescu et al. (2016) show that equidistant

iscrete dosages can lead to drug accumulation within the body;

herefore, in order to avoid harmful overdosing, (non-linear) loga-

ithmic time-spaced dosages can be administered. To illustrate this

ssue, Fig. 9 shows the amounts of amiodarone in compartment

 for two different discrete dosing time periods using u max = 0.5;

ne curve corresponds to a constant discrete dosing time period of

τ= 0.5 days; in the other curve, the dosing time period was es-

imated by the non-linear expression t i = ( t i −1 
α + α�τα) 

1 
/ α with

τ= 0.5 suggested by Hennion and Hanert (2013) . In any case, the

iscrete doses are estimated by using the corresponding optimal

ontinuous infusion profile as the one shown in Fig. 4 . 

.2. Thermal hydrolysis 

This section describes the optimization results for the

ractional-ordinary model representing the thermal hydrolysis used

n mezcal production. To incorporate the effect of temperature,
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Fig. 6. Optimal profile of amiodarone in the peripheral compartment. 

Fig. 7. Amiodarone in compartment 1 for an administration route of doses every 12 h. 

Fig. 8. Amiodarone in compartment 2 for an administration route of doses every 12 h. 
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Table 3 

Doses (ng) provided every 12 h estimated with the optimal infusion rates. 

Time (days) Doses u max = 1 ng / day Doses u max = 0 . 75 ng / day Doses u max = 0 . 50 ng / day Doses u max = 0 . 25 ng / day 

0 0.4900 0.3675 0.2450 0.1225 

0.50 0.2657 0.3515 0.2450 0.1225 

1.0 0.0000 0.0355 0.2353 0.1225 

1.50 0.0074 0.0029 0.0330 0.1225 

2.0 0.0241 0.0218 0.0080 0.1225 

2.50 0.0207 0.0220 0.0218 0.1224 

2.0 0.0183 0.0189 0.0211 0.0479 

3.50 0.0177 0.0178 0.0185 0.0133 

3.0 0.0170 0.0172 0.0173 0.0173 

4.50 0.0163 0.0166 0.0170 0.0194 

5.0 0.0161 0.0163 0.0167 0.0181 

5.50 0.0149 0.0148 0.0149 0.0150 

6.0 0.0123 0.0125 0.0129 0.0150 

6.50 0.0314 0.0321 0.0327 0.0354 

Fig. 9. Amiodarone in compartment 2 for linear ( �τ= 0.5 days) and nonlinear dosing time periods. 

Table 4 

Objective function of the FOOCP for the different administration 

routes 

u max ( ng / day ) �τ = 0 . 25 days �τ = 0 . 5 days �τ = 1 day 

1.0 4.7696 3.1400 - 

0.75 6.1829 4.3692 - 

0.50 8.9611 7.0141 4.0242 

0.25 17.3172 15.1182 11.5182 
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p

rrhenius-like expressions are considered in the kinetics constants

f the reactions: 

 h = k 1 e 
( −E 1 /T ) 

 d = k 2 e 
( −E 2 /T ) 

The values of the constants k 1 , k 2 , E 1 and E 2 are estimated

rom experimental data provided by ( Garcia-Soto et al, 2011 ). To

pproach the optimization of the system, the objective is defined

s the maximization of the final concentration of reducing sugars,

ince they participate directly in the alcoholic fermentation to ob-

ain mezcal; temperature is defined as the control variable. The

ame considerations were used by Toledo-Hernandez et al. (2014b) .

he FOOCP developed here is: 

inimize J = −M 

(
t f 

)
(58) 
Subject to: 

 

 

D 

1 −α1 

t P (t) = X (59)

 

 

D 

1 −α2 

t M(t) = Y (60) 

 

 

D 

α1 

t X = −k 1 e 
( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]
(61) 

 

 

D 

α2 

t Y = k 1 e 
( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]

− k 2 e 
( −A 2 /T ) 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]
(62) 

dD 

dt 
= k 2 e 

( −A 2 /T ) 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]
(63) 

69 . 15 ≤ T ≤ 379 . 15 (64)

The bounds of the temperature are defined based on the data

rovided by Garcia-Soto et al. (2011) . 
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6.2.1. The Euler-Lagrange optimality conditions for the thermal 

hydrolysis 

The fractional-ordinary Hamiltonian function is given by: 

H = X λ1 + Y λ2 − k 1 e 
( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]
λ3 

+ 

{
k 1 e 

( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]

−k 2 e 
( −A 2 /T ) 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]}
λ4 

+ k 2 e 
( −A 2 /T ) 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]
λ5 (65)

Therefore, the differential expressions and the end conditions

for the multipliers are given by -( Eqs. (66) –( 70 ). 

 

D 

1 −α1 

t f 
λ1 (t) = 

∂H 

∂P 
= 0 λ1 

(
t f 

)
= 0 (66)

 

D 

1 −α2 

t f 
λ2 (t) = 

∂H 

∂M 

= 0 t D 

1 −α2 

t f 
λ2 

(
t f 

)
= −1 (67)

 

D 

α1 

t f 
λ3 (t) = 

∂H 

∂X 

= λ1 − k 1 e 
( −A 1 /T ) λ3 + k 1 e 

( −A 1 /T ) λ4 

λ3 

(
t f 

)
= 0 (68)

 

D 

α2 

t f 
λ4 (t) = 

∂H 

∂Y 
= λ2 − k 2 e 

( −A 2 /T ) λ4 + k 2 e 
( −A 2 /T ) λ5 

λ4 

(
t f 

)
= 0 (69)

d λ5 (t) 

dt 
= 

∂H 

∂D 

= 0 λ5 

(
t f 

)
= 0 (70)

The two point boundary value problem consists of a SFODE de-

fined by -( Eqs. (59) –( 64 ) and (66) -(70). The initial conditions are

P (0) = P 0 , M(0) = M 0 , D (0) = D 0 , X(0) = 0 and Y (0) = 0 . A sim-

plification can be made previous to the numerical solution. By us-

ing Eqs. (66) and (70) , one can show that λ5 (t) = 0 and λ1 (t) = 0 .

Finally, the expression for the control law is given by Eq. (71) ; the

result λ5 (t) = 0 has already been applied: 

∂H 

∂T 
= − A 1 

T 2 
k 1 e 

( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]
λ3 

+ 

{
A 1 

T 2 
k 1 e 

( −A 1 /T ) 

[
X + P (0) 

t α1 −1 

�( α1 ) 

]

− A 2 

T 2 
k 2 e 

( −A 2 /T ) 

[
Y + M(0) 

t α2 −1 

�( α2 ) 

]}
λ4 = 0 (71)

The numerical approach based on the gradient method

( Section 3.3 ) is used to obtain the solution to the FOOCP. The

optimal value of the objective function is 181.6886 g/l. Fig. 10

shows the optimal temperature profile. Fig. 11 shows the results

for the state variables. Toledo-Hernandez et al. (2014b) addressed

the same problem. However, their approach was significantly dif-

ferent, since they used a method based on the Laplace transfor-

mation, the shooting method and non-linear programming tech-

niques. Since Laplace transformation requires the system to be lin-

ear, Toledo-Hernandez et al. (2014b) divided the time interval in

several time periods. Then, they assumed that the temperatures re-

main as constant in each time period, so that they can assume a

linear behavior in each of such periods. Their result is therefore

a step-wise profile, obtaining an optimal value of temperature to

be kept in each of the time periods. In this work, no transfor-

mation is required; further, the non-linearity of the expressions
oes not impose a limitation to the approach. Further, a contin-

ous optimal profile is achieved. Nevertheless, for this example,

he optimal profiles of the state variables obtained by using our

ontinuous temperature profile are not significantly different from

hose obtained with the step-wise temperature profile of Toledo-

ernandez et al. (2014b) . 

. Summary and conclusions 

Fractional calculus operators allow representing the dynamic

ehavior of variables that show memory effects. Generalized dy-

amic models, however, are expected to involve not only state vari-

bles that can be represented by fractional operators, but also vari-

bles that are better represented by conventional ordinary dynam-

cs. In this context, our work describes conceptual and numerical

ools that can be used for the modeling, simulation and optimiza-

ion of systems that include both fractional and ordinary differen-

ial equations. 

On the one hand, the most relevant aspects and developments

f this work are: 

(i) As a direct extension of the predictor corrector techniques used

for the integration of either ordinary or fractional differential

equations, a combined approach is implemented in this work,

so that the predictor-corrector method simultaneously can han-

dle both types of equations in the same dynamic model. Such

integration technique has proven to be a fundamental tool for

the simulation and optimization problems addressed in the

case studies. Although a purely fractional integration method

could be applied for the integration of both integer and frac-

tional differential equations, the use of a fractional technique

for the integration of an ordinary equation is not practical, since

the computational effort increases unnecessarily. Therefore, the

main contribution of the method developed here lies basically

on the decomposition of the equations and on the numerical

implementation of the strategy. As described, the fundamentals

of this technique and other multi-step methods have already

been reported in the literature ( Garrapa, 2018 ). 

ii) A conceptually consistent approach to fractionalize ordinary

models ( Dokoumetzidis et al., 2010b ) results in systems of lin-

ear multi-term FDEs that include both fractional and ordinary

differential operators in the same equations. The reformulation

approach used in this work allows the separation of the dif-

ferential operators, so that a set of fractional-ordinary differ-

ential equations is obtained (only one operator in each equa-

tion). This reformulation is straightforward but significant, since

it allows the use of the generalized predictor-corrector method

and the optimization strategy developed in this work to address

fractional-ordinary optimal control problems. 

ii) A generalized version of the Euler-Lagrange optimality condi-

tions for fractional ordinary optimal control problems is pro-

vided in this work, so that the optimization of the combined

problem can be solved through a gradient based approach. The

expressions obtained for the generalized conditions are based

on the derivations provided by Agrawal (20 04 , 20 08 ) and on

the classical theory of optimal control ( Stengel, 1994 ). 

v) Two case studies reported in the literature are used to vali-

date our results. Previous solution approaches for both exam-

ples suggest the use or transformation methods to simulate and

optimize the systems. Our approach represents and alternative

that does not require such transformation to obtain the solu-

tion. 

v) For the thermal hydrolysis case study, a comparison with the

approach used for Toledo-Hernandez et al. (2014b) shows that

the numerical advantages of not using an inverse Laplace trans-
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Fig. 10. Optimal temperature profile for the thermal hydrolysis case-study. 

Fig. 11. Optimal profiles for the thermal hydrolysis case-study. 
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formation approach are significant in the case of an optimiza-

tion problem. 

i) For the example of the administration of amiodarone, a contin-

uous optimal profile for the infusion rate was determined. For

practical considerations in this particular example, an alterna-

tive approach was provided for the case that the administra-

tion route of the drug requires discrete doses at given times

during the treatment. The optimal results are quite similar to

those obtained by Herceg et al. (2017) , who studied an analo-

gous administration route for amiodarone, but following a ra-

tional approximation approach. 

On the other hand, one of the limitations of this work is still

he size of the problems that have been solved through the pro-

osed approach. No large-scale problems have been tested yet. On

his regard, from the computational point of view, the performance

f the gradient method in the fractional-ordinary case is similar

rom its performance in the ordinary case; its convergence ca-

abilities as well as the computational effort needed are signifi-
antly affected when the number of control variables is increased.

hat is of course a relevant issue on large scale problems. There-

ore, alternative techniques should be explored to solve the two-

oint fractional-ordinary boundary value problem which results

rom the Euler-Lagrange Optimality conditions used on this paper.

n fact, fractional-ordinary optimal control problems could also be

pproached by direct transcription methods; for such case, how-

ver, efficient discretization methods for fractional-ordinary prob-

ems in the time domain would be needed. Finally, as another ad-

itional guidance for future work, large-scale case-studies involv-

ng fractional-ordinary equations are still to be developed; the real-

orld applications described by Sun et al. (2018) appear as excel-

ent suggestions to complete such task. 
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