
Journal of Theoretical Biology 487 (2020) 110105 

Contents lists available at ScienceDirect 

Journal of Theoretical Biology 

journal homepage: www.elsevier.com/locate/jtb 

Personalize d me dicine for in vitro fertilization procedure using 

modeling and optimal control 

Apoorva Nisal a , b , Urmila Diwekar a , b , ∗, Vibha Bhalerao 

c 

a Department of Industrial Engineering, University of Illinois, Chicago, IL 60607, United States 
b Center for Uncertain Systems: Tools for Optimization & Management (CUSTOM), Vishwamitra Research Institute, Crystal Lake, IL 60012, USA 
c Jijamata Hospital and IVF Center, Nanded, India 

a r t i c l e i n f o 

Article history: 

Received 15 April 2019 

Revised 1 November 2019 

Accepted 2 December 2019 

Available online 3 December 2019 

Keywords: 

Superovulation 

IVF treatment 

Customized medicine 

Crystallization 

Optimal control 

Clinical trial 

a b s t r a c t 

In vitro fertilization (IVF) is the most common technique in assisted reproductive technology and in most 

cases the last resort for infertility treatment. It has four basic stages: superovulation, egg retrieval, fer- 

tilization, and embryo transfer. Superovulation is a drug-induced method to enable multiple ovulation 

per menstrual cycle and key component towards a successful IVF cycle. Although there are the general 

guidelines for dosage, the dose is not optimized for each patient, and complications, such as overstim- 

ulation, can occur. To overcome the shortcomings of this general system, a mathematical procedure is 

developed which can provide a customized model of this stage regarding the size distribution of eggs 

(follicles/ oocytes) obtained per cycle as a function of the chemical interactions of the drugs used and 

the conditions imposed on the patient during the cycle, which provide a basis for predicting the possible 

outcome. Uncertainty and risk are modeled and included in optimal drug dosage decisions. This paper 

describes the theory, model, and the optimal control procedure for improving outcomes of IVF treatment 

for one of the four protocols used in real practice. The validation of the procedure is performed using 

clinical data from the patients previously undergone IVF cycles. Customized patient-specific model pa- 

rameters are obtained by using initial two-day data for each patient. Subsequently, this model is used to 

predict the FSD for the remaining days of the cycle. This procedure was conducted for 49 patients. The 

results of the customized models are found to be closely matching with the observed FSD. These results 

thus validate the modeling approach and consequently its use for predicting the customized optimal drug 

dosage for each patient. Using the customized model and the optimized dosage, the FSD at the end of the 

cycle was determined. A small double-blind clinical trial was also conducted in India. The results from 

the trial show that the dosage predicted by using the model is 40% less than the suggestion made by 

the IVF clinicians. The testing and monitoring requirements for patients using optimized drug dosage is 

reduced by 72%. Work on the other three protocols and for patients in the USA is started and is showing 

promising results. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

A survey conducted by the World Health Organization (WHO)

n 2010 using data from 190 countries over a period of 20 years

ound that around 2% women suffer from primary infertility and

0% women suffer from secondary infertility. Primary infertil-

ty is the inability to conceive a first live birth and secondary

nfertility is the inability to conceive after a prior live birth. Cer-

ain regions of Eastern Europe, North Africa, Middle East, Ocea-

ia and Sub Saharan Africa showed greater prevalence of infer-

ility ( Mascarenhas et al., 2012 ). In the United States itself, data
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ollected by the Center for Disease Control (CDC) over a 4-year

pan showed 6.7% of married women to be suffering from infer-

ility ( NCHS, 2016 ). 

In vitro Fertilization process is one of the most commonly

ecommended treatments in Assisted Reproductive Technologies 

ART). 1.7% of infants were born through ART in the United States

n 2015 ( Sunderam et al., 2018 ). In vitro fertilization (IVF) is a pro-

ess by which oocytes or egg cells are fertilized by a sperm outside

he body in a laboratory simulating similar conditions in the body,

nd then the fertilized eggs or embryos are implanted back in the

terus for a full-term pregnancy. It has four basic stages ( Fritz

nd Speroff, 2010 ): superovulation, egg retrieval, insemination/

ertilization and embryo transfer and are shown in Fig. 1 . 

https://doi.org/10.1016/j.jtbi.2019.110105
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
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Fig. 1. Schematic Diagram of In vitro Fertilization procedure ( Gordon, 2011 ). 
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o  
IVF is an expensive treatment, and the out-of-pocket costs per

cycle tend to be around $10,0 0 0-$15,0 0 0. This cost varies and

increases with multiple factors such as unsuccessful IVF cycles,

multiple births, low birth weight infants and preterm births oc-

curring from IVF cycles ( Sunderam et al., 2018 ). The cost of IVF

depends upon the cost of superovulation. Currently, this step is

executed using almost daily monitoring of the follicular develop-

ment using ultrasound and blood test. The daily dosage of hor-

mones is customized for each patient based on these tests. Con-

ventionally doses are prescribed based on empirical data instead

of randomized control trials and start at 150 or 225 IU. Devroey

and team employed initial low dose FSH (Follicle Stimulating Hor-

mone) (100 IU) on a relatively young age group and recorded

a high number of retrieved oocytes ( Devroey et al., 1998 ). Pre-

scribed minimum dosages start from 150 to 300 IU for younger pa-

tients and reach the absolute maximum at 450 IU for poor respon-

ders ( Jungheim et al., 2015; Rombauts, 2007; Dorn, 2005 ). Certain

factors which come into play when choosing an FSH dose for a pa-

tient are usually female age, anamnesis, clinical criteria and ovar-

ian markers such as AFC (Antral Follicle Count) and AMH (Anti-

Mullerian Hormone) ( La Marca and Sunkara, 2013 ). FSH starting

dose based on AFC was found to be less than 225IU for most pa-

tients under the age of 35 years ( La Marca et al., 2013 ). Although

there are general guidelines for the dosage limits, the dose is not

optimized for each patient. IVF procedure can have side-effects

such as the Ovarian Hyper Stimulation Syndrome (OHSS) ( Alper

et al., 2009 ), and the remedial actions are still unidentified. Around

1–2% of women undergoing IVF suffer from a serious case of OHSS

( Klemetti et al., 2005 ). Patients suffering from Polycystic Ovarian

Syndrome (PCOS) are found to be the ones most susceptible to

OHSS. However, many patients who do not suffer from PCOS may

also develop OHSS after stimulation. Protocols based on factors like

age, AMH, AFC, FSH, BMI (Body Mass Index) levels and smoking

history predict optimal protocols with highest follicle yield and re-

duced occurrence of OHSS ( Yovich et al., 2016 ). 

Models predicting the outcome of the IVF cycle have been

developed based on parameters such as- patient characteristics,

historical in vitro fertilization cycle data, embryo morphology or

biomarkers during culture to create a cost-effective customized

treatment strategy. Post-treatment predictors included number of

eggs collected, cryopreservation of embryos and embryonic stage

when transferred ( Simopoulou et al., 2018 ). Another branch of per-

sonalized treatment for IVF used the âǣnomogramâǥ as a mathe-

matical tool to predict the ovarian response and starting FSH dose

based on predictors such as age, FSH, AMH and AFC ( Allegra et al.,
017; Di Paola et al., 2018; La Marca et al., 2013; Moon et al., 2016;

apaleo et al., 2016 ).Response variability based on FSH, LH/FSH ra-

io, AMH (Anti-Mullerian Hormone), BMI (Body Mass Index), AFC

nd age demonstrate the complexity and diversity in biological

nd clinical features of each patient. Biological diversity in patients

dds uncertainty to the estimation of IVF outcomes, thus indicat-

ng the need for customized patient-specific and cycle-specific pre-

ictive models ( Simopoulou et al., 2018 ). However, all the existing

rotocols are based on patient history, testing and monitoring, and

rofessional judgment of the physician. The complications such as

verstimulation or unsuccessful superovulation do occur. The cost

ssociated with patient monitoring and testing as well as the hor-

onal drugs make the superovulation stage very expensive. The

vidence is building in support of personalized IVF treatment and

ools that can suggest optimal patient-specific drug dosage profiles

o reduce hyperstimulation, cost of treatment, improve the oocyte

uality and quantity to increase the overall success rate of IVF, re-

ulting in successful pregnancies and live-birth. 

The work presented here is a continuation of the mathemati-

al modeling and computerized algorithm to generate customized

ormonal dosing for enhanced superovulation as proposed by

enkie et al. (2013) , Yenkie and Diwekar (2014) . Yenkie et al., 2013

resented model equations. However, they integrated the differen-

ial equations analytically using the same dose from time zero to

he specified time. This resulted in a discrete model for each in-

egration time they were comparing the error between model and

ctual data. Therefore, their estimated parameters did not repre-

ent the solution of the continuous differential equations and they

ould not identify the patient dependent and patient independent

arameters of the model. In this work, we have used the contin-

ous differential equation model for IVF cycle where the dosage

an be different for each time step. The model dependent and in-

ependent parameters are identified. This is also consistent with

he proposed optimal control strategy. There are four commonly

sed protocols for IVF. The four protocols ( Scoccia, 2017 ) are (1)

ong Lupron agonist Protocol, (2) Microflare agonist protocol, (3)

our stop Lupron agonist Protocol, and (4) Flexible GnRH antago-

ist (Ganerelix or Cetrorelix) Protocol. The approach is presented

or the first of the four protocols at this stage. The validation of

he procedure is carried out using clinical data from patients who

ave previously undergone IVF cycles. Initial two-day data for each

atient is used to obtain parameters of the model for that pa-

ient. The model is used then to predict follicle size distribution

FSD) for the remaining days of the cycle. This procedure was con-

ucted for 49 patients. The results of the customized models are

ound to be closely matching with the observed FSD on the succes-

ive days of the IVF superovulation cycle. This customized model

s then used to optimize the dosage for this patient. Using the

odel and the optimized dosage, the FSD at the end of the cycle

as determined. A small clinical trial was also conducted in India.

his was a double-blinded trial. The results show that the dosage

redicted by using the model is 40% less than that suggested by

he IVF clinicians. It also shows that the number of mature folli-

les obtained at the end of the cycle using the dosage predicted

y the model is significantly higher than that of physician sug-

ested dosage. These results were consistent with all patients in

his clinical trial. The testing requirements for these patients with

ptimized drug dosage is also reduced by 72%. 

The next section presents the modeling and optimal con-

rol methodology, followed by results and discussions section.

ection 4 presents the summary and future work. 

. Methodology 

In the earlier work, a model for superovulation was devel-

ped based on principles of batch crystallization. The method of
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Table 1 

Inversion matrix A . 

A 

2 6 10 14 18 22 

2 18 50 98 162 242 

2 54 250 686 1458 2662 

2 162 1250 4802 13122 29282 

2 486 6250 33614 118098 322102 

2 1458 31250 235298 1062882 3543122 
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oments was used for representing the follicle growth and num-

er prediction model ( Yenkie et al., 2013 ). This section presents the

odel briefly below, followed by the optimal control strategy. 

.1. Mathematical modeling of in vitro fertilization 

Superovulation is the first stage in IVF where external hormonal

njections cause multiple follicles to enter the growth phase and

ncrease in size. The number of follicles activated for growth re-

ains constant for a particular patient ( Baird, 1987 ). The super-

vulation stage of IVF is markedly similar to the particulate pro-

ess of batch crystallization ( Hill, 2005; Yenkie and Diwekar, 2012 ).

he moment model discussed here was developed on the basis

hat properties of a particulate system can be represented by mo-

ents of its particle size distribution, concepts of batch crystalliza-

ion and resemblance of superovulation to growth of seeded batch

rystals ( Hill, 2005; Hu et al., 2005; Yenkie et al., 2013; Randolph,

012 ). The moments are calculated using the baseline data for each

atient and using the general expression in (1). 

i = 

∑ 

n j (r, t) r i j �r j (1)

here μi is the i th moment, n j ( r, t ) is the number of follicles in

in ‘j’ of mean radius ‘r’ at time ‘t’, r i 
j 

is the mean radius of j th bin

nd �r j is the range of follicle radii in each bin. The model for

redicting follicle size and distribution utilizes follicle growth rate

nd moment equations. It is assumed that the follicle growth rate

 G )) is directly dependent on the dose of FSH administered ( �C fsh )

s shown in (2). Here, k and α are the rate constant and the rate

xponent respectively. 

 (t) = k �C αf sh (t) (2) 

The moment equations for calculating moments from the ze-

oth moment up to the 6 th order were derived from the gen-

ral expressions in (3) and (4). It can be seen from (4) that the

(n + 1) th moment is dependent on the n th moment. 

0 = constant (3) 

dμi 

dt 
= i G (t) μi −1 (t) ; (i = 1 , 2 , . . . 6) (4)

n in vitro fertilization process, the measurements for follicle size

nd growth are conducted on different cycle days to observe suffi-

ient growth. While there is only 1 measurement, the follicles are

rouped by size in 6 bins ranging from 0 to 24 mm in diameter.

hus, six moment values can be obtained per day and 2-day data

an be used to obtain the values of the 3 parameters. The values

or parameters μ0 , k and α for the model are calculated by fitting

he results from Eqs. (1) to (4) to the moment data at different

imes in the cycle. The moment values predicted by Eqs. (2) to (4)

re converted to follicle size distribution (FSD) to validate the out-

ut. The follicle distribution was approached by using an inversion

atrix (A) combined with non-linear optimization techniques as

hown in Eqs. (5) and (6) ( Flood, 2002; Yenkie et al., 2013 ). 

= An (5) 

 = A 

−1 μ (6) 

here, n - vector of number of follicles in all size bins for the i th

ycle day, μ - moment vector for i th cycle day and A - inversion

atrix of size 6x6. The inversion matrix is shown in Table 1 below.

In the clinical (experimental) settings, initial dosage for the pa-

ient is determined by the physician based on various patient fac-

ors. For the first 4 days of the cycle, same dose is continued. After

he 4 th day, blood testing and ultrasound tests are used to deter-

ine dose for each day. The validity of the model was evaluated by
omparing the follicle size distribution as predicted by the model

rom 5 th day on with that of the experimental data. 

.2. Optimal control 

Optimal control method evaluates the time-varying values of

ontrol variables which aid in achieving the desired outcome.

he variable to be optimized in an optimal control problem is

 time varying vector which makes optimal control method apt

or predicting customized dosages over time. Some applications

f optimal control in biomedical field include- predicting can-

er chemotherapy and tumor degradation ( Castiglione and Piccoli,

007; Czakó et al., 2017 ), drug scheduling in HIV infection treat-

ent ( Khalili and Armaou, 2008 ) and blood glucose regulation in

nsulin-dependent diabetes patients ( Acikgoz and Diwekar, 2010 ).

f the various methods for solving optimal control problems such

s calculus of variations, dynamic programming, maximum princi-

le, and nonlinear programming; the maximum principle method

s applied here ( Diwekar, 2008 ). The maximum principle method

olution is obtained through solving first order ordinary differen-

ial equations thus making the process easier as compared to other

ethods. The control variable is the value of hormonal doses per

ay of the IVF cycle. The objective of superovulation is to obtain a

igh number (maximum possible) of uniformly sized (18–22 mm

iameter) follicles on the last day of FSH administration. 

.2.1. Mathematical formulation 

After initial 4–5 days of treatment with FSH, the follicle size

nd number plots follow Gaussian/ Normal distribution and this

rend continues with a shift in mean and variance. Also, The avail-

ble patient data reflected a normal distribution and thus it was

ssumed as an apriori distribution for follicles. Thus normal distri-

ution is used to define objective function in terms of moments.

he moment model for FSD prediction as discussed above and the

ethod for deriving normal distribution parameters are used as

he basis for deriving expressions for the mean and coefficient of

ariation.The coefficient of variation and mean of the normal dis-

ribution expressed in terms of moments are derived using the

ethod presented by John et al. (2007) . The mean ( ̄x ) and coef-

cient of variation (CV) for the normal distribution of follicle size

xpressed in terms of moments are shown in Eqs. (7) and (8). 

¯
 = 

μ1 

μ0 

(7) 

V = 

√ 

μ2 μ0 

μ2 
1 

− 1 (8) 

uperovulation involves obtaining similar sized follicles on the last

ay of the cycle. Thus, the objective of superovulation in mathe-

atical form can be; to minimize the coefficient of variation on

ast day of FSH administration ( CV ( t f )) where the control variable

s the dosage of FSH with time ( C fsh ( t )). To customize the model

or each patient, the parameters are evaluated using the initial

wo-day observations of the follicle size and counts along with the

SH administered. The optimal dosage prediction for the desired

uperovulation outcome is represented as Eq. (9) . The objective
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Table 2 

Tabular representation of Number of Follicles observed and the 

prescribed dosages on different cycle days for a patient. 

Number of Follicles 

Day bins/day 1 5 7 9 10 11 

0-4 1 0 0 0 0 0 

4-8 3 1 0 0 0 0 

8-12 4 6 2 0 0 0 

12-16 0 1 6 7 5 2 

16-20 0 0 0 1 3 4 

20-24 0 0 0 0 0 2 

Cfsh (IU) 150 150 150 150 150 150 
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function is subject to the follicle growth term and moment model

constraint, equation for the coefficient of variation in terms of

moments and mean as presented in Eqs. (10) and (11) and the

constraint on mean follicle size ( ̄x ) to not exceed beyond 22 mm

diameter. 

min C f sh 
CV (t f ) (9)

s.t. 

dCV 

dt 
= 

Gμ0 

CV μ1 

[
1 − μ2 μ0 

μ2 
1 

]
(10)

d ̄x 

dt 
= G (11)

2.2.2. Maximum principle method 

The optimal control problem presented here has 9 state vari-

ables with 9 state equations. In the maximum principle method

of optimal control, one adjoint variable corresponding to one state

variable is introduced resulting in 9 adjoint variables with 9 ad-

joint equations. The i th state variable is denoted as ′ y i ′ and the

9 state variables are shown in Eq. (12) . The i th adjoint variable

is denoted as ′ z i ′ . Then the objective is converted to the Hamil-

tonian form( H ), which on expansion involves both state and ad-

joint variables. These expressions are shown in Eqs. (13) to (16).

The optimality condition for this problem and tolerance level for

the derivative of Hamiltonian with respect to control variable is

expressed in Eq. (17) . 

y i = [ μ0 , μ1 , μ2 , μ3 , μ4 , μ5 , μ6 , CV, ̄x ] (12)

Max C f sh (t) 
[ −y 8 (t f )] (13)

dy i 
dt 

= f (y i , t, C f sh ) (14)

dz i 
dt 

= 

9 ∑ 

j=1 

z i 
δ f (y i , t, C f sh ) 

δy i 
= f (y i , t, C f sh ) (15)

H = 

9 ∑ 

j=1 

z i f (y i , t, C f sh ) (16)

∣∣∣∣ dH 

dC f sh 

∣∣∣∣ = 0 (17)
Fig. 2. Comparison of Observed (E) Follicular Distribution with the Follicle Size Distribut

Parameters Estimated from All Day Data, (b) Patient Parameters Estimated using Two-day
hese set of equations are solved stepwise. The state equations are

ntegrated in forward direction from starting time t 0 till the end

f the cycle t f and the adjoint equations are integrated backwards.

t is also checked that the optimality condition is satisfied at each

ime. 

The model presented in here is applied for the data available

or 49 patients from Jijamata Hospital, Nanded, India. The data in-

luded details like prescribed dose profile, follicle measurements

n different cycle days, patient age, previous infertility or preg-

ancy for Indian women. However, the initial prescribed dose, fol-

icle measurements and cycle time were the only inputs to the

odel. An example of utilized input data for a Patient is presented

n Table 2 . 

. Results & discussion 

The results for fit of the mathematical model against available

ata, results from parameter estimation, optimal control and the

esults from clinical trial are presented and discussed in this

ection. 

.0.1. Model validation 

The mathematical model described in Section 2.1 uses the data

ollected on the first and fifth day to calibrate the model. How-

ver, the model fit using all day data is going to be much bet-

er. Fig. 2 shows the FSD for various days observed in real prac-

ice (denoted as experimental values (E)) compared to the model

redictions (denoted as (M)) considering data from considering all

ay data ( Fig. 2 .a) and considering only the two-day data ( Fig. 2 .b)

or patient 1. Similarly, the results are presented for patient 2 in

ig. 3 .a and 3 .b respectively. This shows that the model performs

ery well for these two patients irrespective of two-day or all-day
ion Predicted by Customized Model (M) for Various Days for Patient 1: (a) Patient 

 Data. 
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Fig. 3. Comparison of Observed (E) Follicular Distribution with the Follicular Distribution Predicted by Customized Model (M) for Various Days for Patient 2: (a) Patient 

Parameters Estimated from All Day Data, (b) Patient Parameters Estimated using Two-day Data. 

Fig. 4. Histogram of ( n mature , M )/( n mature , E ) for 49 patients: (a) Model Fitted using All Day Data, (b) Model Fitted using Two-day Data. 
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Fig. 5. Probability density function for the patient parameter α: (a) Distribution of 

αal l −day (b) Distribution of error α2 −day / αal l −day . 
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ata. The results of these two patients are selected as they repre-

ent two ends of the different age spectrum. As stated earlier, data

as been gathered for 49 patients from Jijamata Hospital, India.

his data is used to study the predictive capability of the model

or the final day of stimulation. A histogram of the ratio of final

ay mature follicles predicted by the model ( n mature , M 

) to final day

ature follicles observed experimentally ( n mature , E ) in real practice

s presented in Fig. 4 . Fig. 4 .a presents the prediction from all day

ata and Fig. 4 .b presents predictions from two-day data. For most

f the patients (more than 90%) of the patients, the model gives a

ood fit for all-day data versus 70% for two-day data predictions.

lthough, the model predictions are not that good for 30% of the

atients for the two-day data, it is important to find out whether

he optimal control profile can be still used for these patients. 

.1. Results from parameter estimation 

It has been observed that the model parameter k (follicle

rowth rate constant) is unchanging across patients and is ap-

roximately valued at 22. Therefore, it can be concluded that k

s patient independent. However, α (follicle growth rate exponent)

hanges for each patient. The probability distribution for αal l −day 

nd the distribution of error in α2 −day compared to αal l −day is

hown in Fig. 5 .a and 5 .b respectively. Analysis of the outliers from

he histograms is presented in Fig. 5.a. It is observed that there are

wo patients who are outliers. Further analysis of these two pa-

ients revealed that α2 −day value for both is above -0.92. Thus, it
an be concluded that the model is the best fit for values of al-

ha ranging from -0.5 to -0.9. It should be noted that the model

resented here is identifiable for values of alpha between (-1.4, 0).

.2. Optimal control 

As stated earlier, same dose is used from day 1 to day 4, and

o testing is done till 5 th day. Optimal control method is applied

o find dosage from 5 th day onwards using the maximum princi-

le. The patient parameters estimated using the two-day data are

sed and the maximum principle method is applied to determine
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Fig. 6. (a) Follicular distribution for Patient 2 predicted by optimal control with 

two-day parameters for the next day of the cycle vs observed follicle distribution 

from experiments for the last day of the cycle (b) Optimal dosage for Patient 2 

predicted by optimal control with two-day parameters vs experimental dosage pre- 

scribed by clinician. 
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p  
dosage from 5 th day. The optimal drug dosages for each patient

are calculated based on the starting dose, cycle days and the initial

follicle size distribution observed in each patient. The final day ma-

ture follicle count using optimal control is then compared with ob-

served mature follicles using the dosage specified by the attending

physician for these 49 patients. It is to be noted that, the model

is personalized for each patient by considering 2-day data con-

sisting of follicle measurements and prescribed doses from that

patient. After that, optimal control was applied to calculate the op-

timal dosage profile for that patient. Since the parameters from all-

day data is more accurate than two-day data, those parameters are

used with optimal control profile predicted by the two-day data

for comparison. The optimal control results for a patient are shown

in Fig. 6 . Fig. 6 .a shows the mature follicle distribution optimal

versus experimental and the optimal dosage versus experimental

dosage is shown in Fig. 6 .b. The cumulative dose for this patient

is found to be 2662.5 IU compared to clinician prescribed dose of

3600 IU. These results serve as an example of the significant reduc-

tion in dosage which consequently reduces the costs to the patient.

The initial data for 50 patients along with the results from opti-

mal control for all the 49 patients is presented in Table 3 attached

in the appendix. 1 patient was excluded from the analysis due to

insufficient initial data. The table shows the age of each patient,

values for parameters- K and α2 −day , Experimentally observed fol-

licles, Model predicted optimal follicles on the last cycle day, Cu-

mulative dosage prescribed by clinician and Dosage predicted by

the model with 2-day data for each patient. 

The optimal control profile was calculated and customized for

each patient for the clinical data available on 49 patient cycles. The
Fig. 7. Histogram of all patients: (a) Ratio of optimal mature follicle
istograms of the results are presented in Fig. 7 . Fig. 7 .a shows the

istogram of the ratio of optimal mature follicles to mature fol-

icles observed using physician suggested dosage. Fig. 7 .b shows

he percent(%) reduction in dosage for each patient. It has been

ound that 98% of the patients show higher mature follicles for

he optimal control profile than the physician specified dosage.

ost of these patients also show a significant reduction in dose

equirements for successful superovulation. This also shows that

he two-day data is sufficient to predict the optimal dosage for

ach patient. Typically, older patients (age > 35 years) are pre-

cribed dosages on the higher side ranging from 300-450IU. Even

or older patients like Patient 3 (40 years), the results show that

he actual dose needed to get similar outcomes is much less than

s prescribed. Also, the starting doses are lower at 300 IU and

25IU, thus corroborating the idea that lower starting doses can

lso achieve similar responses in patients. This study found no

orrelation between the age of patients and higher doses of 300-

50IU. Ovarian Hyperstimulation Syndrome (OHSS) is a risk that is

ompounded by administration of higher doses of FSH. While the

henomenon of OHSS is not considered in the objective function

ere, the optimal dosages predicted by the model are less than the

rescribed doses. Since the occurrence of OHSS is highly correlated

o higher dosages, the reduction of dose through optimal doses

ubsequently minimizes the onset of OHSS. Further our model pre-

icts all day distribution of follicles which shows that OHSS does

ot occur for all the patients. Thus, the lower optimal doses mini-

ize the onset of OHSS as well. 

.3. Overall approach for customized medicine 

The model and optimal control methods are implemented in in-

egrated software for clinical trials. This software is called OPTIVF

 Diwekar, 2018 ). The software uses the initial two-day data from

he patient, i.e., their follicle size distribution and hormone dosage,

s an input to the model. Optimization based parameter estima-

ion (iterative) of the moment model described in Section 2 is car-

ied out to customize the model for each patient. The parameters

hen are used along with the iterative optimal control capability

o find optimal drug dosing profile for the remaining days of the

ycle. Fig. 8 shows a schematic of this procedure. Thus, daily tests

re avoided, and a reduced amount of drugs can be used to obtain

ignificantly better outcomes. 

.3.1. Clinical trial 

Recently, the first clinical trial was conducted in Jijamata Hos-

ital, Nanded, India. The trial involved 10 patients and 3 decision
s to experimental mature follicles, (b) % Reduction in dosage. 
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Fig. 8. Schematic of the overall approach and the steps in the OPTIVF software 

package. 

Fig. 9. Clinical trial patient 3, customized dosage comparison. 
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Table 3 

Table presenting initial available data and results from optimal control model. Ini- 

tial Data: ID - Patient ID, Age - Patient Age. Results from Parameter Estimation: 

α2 −day - values for parameter α with 2-day data for each patient. Results from Opti- 

mal Control: Exp Fol - Experimentally Observed Follicles. Opt Fol (2-day)- Optimal 

Follicles predicted by model with 2-day data. Presc. Dose (IU) - Dosage prescribed 

by clinician. Opt Dose (2-day)(IU)- Optimal Dosage predicted by model with 2-day 

data. 

ID Age α2 −day Exp Fol Opt 

Fol(2-Day) 

Presc. 

Dose(IU) 

Opt 

Dose(2-Day)(IU) 

1 34 -0.83 8 8 4050 2062 .5 

2 36 -0.84 3 4 4650 2212 .5 

3 26 -0.70 21 19 1650 1800 

4 30 -0.90 21 21 2550 1425 

5 28 -0.70 22 21 1350 1650 

6 23 -0.82 25 19 975 1125 

7 30 -0.77 12 14 1725 1350 

8 36 -0.66 6 6 6300 2550 

9 30 -0.74 2 4 4650 2362 .5 

10 34 - 18 - not specified - 

11 30 -0.87 7 8 2400 1425 

12 30 -0.64 8 8 2550 1800 

13 28 -0.96 5 4 2550 1725 

14 32 -0.88 8 8 2400 1650 

15 38 -0.74 10 9 2550 1650 

16 34 -0.69 5 4 1950 2137 .5 

17 26 -0.74 6 6 1275 1200 

18 30 -0.79 9 9 2250 1500 

19 26 -0.95 20 13 1275 862 .5 

20 28 -0.77 5 7 2550 1462 .5 

21 34 -0.82 5 5 4500 2850 

( continued on next page ) 
akers - 2 clinicians and 1 modeler. It was a double-blinded trial.

alf of the patients were given dosage by the attending physician,

nd the other half were given the dosage predicted using this new

pproach. For each patient, dosage is determined by 1 doctor and

he modeler. The second doctor chose which dosage profile to use

or each patient. At the end of the clinical trial, the outcomes were

xamined in terms of quantity and quality of follicles on the last

ycle day. Fig. 9 shows the outcome for one of the patients in the

linical trial. Using the model and the optimized dosage, the follic-

lar distribution at the end of the cycle in a clinical trial for this

atient, it has been observed that the dosage predicted by using

he model is 1162.5IU which is 40% less than that the 195IU as

uggested by the IVF clinicians. It is also observed that the num-

er of mature follicles obtained at the end of the cycle using the

odel predicted dosage is significantly higher at 11 mature folli-

les (almost 100%) than the 5 follicles from the physician suggested

osage. Percentage of good quality eggs were similar from both the

rocedures. These results were consistent with all patients in this

linical trial. The testing requirement for patients using the opti-

ized drug dosage policy predicted is reduced by 72%, and the

umber of follicles obtained were more than twice the number ob-

ained by physician predicted dosage. 
. Summary and future work 

In vitro fertilization (IVF) is the most common technique in as-

isted reproductive technology. Superovulation is a drug-induced

ethod to enable multiple ovulation per menstrual cycle. The suc-

ess of IVF depends on successful superovulation, defined by the

umber and the uniformly high quality of eggs retrieved in a cy-

le. Currently, this step is executed using almost daily monitoring

f the follicular development using ultrasound and blood test. The

aily dosage of hormones is customized for each patient based on

hese tests. Although there are general guidelines for the dosage,

he dose is not optimized for each patient. The cost of testing and

rugs make this stage very expensive. To overcome the shortcom-

ng of this system, a computer-assisted approach was presented

or customized medicine for IVF. The approach uses customized

odels for each patient based on initial two-day data from each

atient to determine the outcomes. Optimal control methods are

hen used on these customized models to obtain drug dosage pro-

les for each patient. It has been found that this procedure pro-

ides better outcomes in terms of a higher number of mature fol-

icles, reduced dosage, and reduced testing for most of the patients.

his can reduce the side effects of the drugs significantly. A small

linical trial supports these theoretical findings. Further work is be-

ng carried out with the clinicians in United States to extend this

pproach to other protocols and for patients in the United States

nd the results are looking promising. 
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Table 3 ( continued ) 

ID Age α2 −day Exp Fol Opt 

Fol(2-Day) 

Presc. 

Dose(IU) 

Opt 

Dose(2-Day)(IU) 

22 23 -0.67 4 4 1950 1500 

23 28 -0.67 21 20 1800 1875 

24 36 -0.60 4 5 3600 2887 .5 

25 40 -0.63 12 13 3600 2662 .5 

26 28 -0.66 11 11 2100 1950 

27 32 -0.69 10 10 2100 1800 

28 - -0.75 6 4 2250 1800 

29 33 -0.80 6 5 2250 1650 

30 29 -0.73 8 6 2250 1800 

31 27 -0.84 9 5 2625 1612 .5 

32 35 -1.39 5 6 3525 1837 .5 

33 32 -0.63 6 6 1800 2287 .5 

34 40 -0.67 5 5 2700 2325 

35 34 -0.74 5 5 2625 1612 .5 

36 32 -0.69 4 3 1650 2062 .5 

37 34 -0.67 8 6 1800 1950 

38 42 -0.60 6 5 3900 3337 .5 

39 30 -0.47 12 12 3900 3300 

40 32 -0.59 9 9 3900 3225 

41 35 -0.61 5 5 3000 3150 

42 29 -0.60 4 4 3900 3600 

43 38 -0.47 5 5 3900 3412 .5 

44 30 -0.61 7 7 3900 3037 .5 

45 29 -0.66 5 3 1950 3000 

46 39 -0.69 6 4 2100 1912 .5 

47 30 -0.80 8 7 2100 1725 

48 28 -0.79 4 2 2100 3000 

49 26 -0.74 5 3 2100 1875 

50 24 -0.65 19 13 1950 2512 .5 
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Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jtbi.2019.110105 . 
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